A study of real-time simulation of liver of virtual surgical robot based on biologically position-based dynamic model

2021 ◽  
pp. 1-16
Author(s):  
Dan Luo ◽  
Yu Zhang ◽  
Jia Li ◽  
Jisheng Li

Virtual surgery robot can accurately modeling of surgical instruments and human organs, and realistic simulation of various surgical phenomena such as deformation of organic tissues, surgery simulation system can provide operators with reusable virtual training and simulation environment. To meet the requirement of virtual surgery robot for the authenticity and real-time of soft tissue deformation and surgical simulation in liver surgery, a new method is proposed to simulate the deformation of soft tissue. This method combines the spring force, the external force of the system, and the constraint force produced by the constraint function of the position-based dynamics. Based on the position-based dynamics, an improved three-parameter mass-spring model is added. In the calculation of the elastic force, the nonlinearity and viscoelasticity of the soft tissue are introduced, and the joint force of the constraint projection process and the constraint force of the position-based dynamics is used to modify mass points movement. The method of position-based dynamics based on biological characteristics, not only considers the biomechanical properties of biological soft tissue as an organic polymer such as viscoelasticity, nonlinearity, and incompressibility but also retains the rapidity and stability of the position based dynamic method. Through the simulation data, the optimal side length of tetrahedral mesh in the improved three-parameter model is obtained, and the physical properties of the model are proved. The real-time simulation of the liver and other organs is completed by using the Geomagic touch force feedback device, which proves the practicability and effectiveness of this method.

Author(s):  
Shaoting Zhang ◽  
Lixu Gu ◽  
Weiming Liang ◽  
Pengfei Huang ◽  
Jan Boehm ◽  
...  

2017 ◽  
Author(s):  
Andrea Mendizabal ◽  
Rémi Bessard Duparc ◽  
Huu Phuoc Bui ◽  
Christoph J. Paulus ◽  
Igor Peterlik ◽  
...  

2018 ◽  
Vol 5 (2) ◽  
pp. 171587 ◽  
Author(s):  
Lang Xu ◽  
Yuhua Lu ◽  
Qian Liu

We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.


Sign in / Sign up

Export Citation Format

Share Document