Automatic generation of learning outcomes based on long short–term memory artificial neural network1

2021 ◽  
pp. 1-13
Author(s):  
Joel Suárez-Cansino ◽  
Virgilio López-Morales ◽  
Julio César Ramos-Fernández

Building a good instructional design requires a sound organization management to program and articulate several tasks based for instance on the time availability, process follow-up, social and educational context. Furthermore, learning outcomes are the basis involving every educational activity. Thus, based on a predefined ontology, including the instructional educative model and its characteristics, we propose the use of a Long Short–Term Memory Artificial Neural Network (LSTM) to organize the structure and automatize the obtention of learning outcomes for a focused instructional design. We present encouraging results in this direction through the use of a LSTM using as the training data, a small learning outcomes set predefined by the user, focused on the characteristics of an educative model previously defined.

Author(s):  
Tao Gui ◽  
Qi Zhang ◽  
Lujun Zhao ◽  
Yaosong Lin ◽  
Minlong Peng ◽  
...  

In recent years, long short-term memory (LSTM) has been successfully used to model sequential data of variable length. However, LSTM can still experience difficulty in capturing long-term dependencies. In this work, we tried to alleviate this problem by introducing a dynamic skip connection, which can learn to directly connect two dependent words. Since there is no dependency information in the training data, we propose a novel reinforcement learning-based method to model the dependency relationship and connect dependent words. The proposed model computes the recurrent transition functions based on the skip connections, which provides a dynamic skipping advantage over RNNs that always tackle entire sentences sequentially. Our experimental results on three natural language processing tasks demonstrate that the proposed method can achieve better performance than existing methods. In the number prediction experiment, the proposed model outperformed LSTM with respect to accuracy by nearly 20%.


2020 ◽  
Vol 35 (4) ◽  
pp. 1203-1220 ◽  
Author(s):  
Qidong Yang ◽  
Chia-Ying Lee ◽  
Michael K. Tippett

ABSTRACTRapid intensification (RI) is an outstanding source of error in tropical cyclone (TC) intensity predictions. RI is generally defined as a 24-h increase in TC maximum sustained surface wind speed greater than some threshold, typically 25, 30, or 35 kt (1 kt ≈ 0.51 m s−1). Here, a long short-term memory (LSTM) model for probabilistic RI predictions is developed and evaluated. The variables (features) of the model include storm characteristics (e.g., storm intensity) and environmental variables (e.g., vertical shear) over the previous 48 h. A basin-aware RI prediction model is trained (1981–2009), validated (2010–13), and tested (2014–17) on global data. Models are trained on overlapping 48-h data, which allows multiple training examples for each storm. A challenge is that the data are highly unbalanced in the sense that there are many more non-RI cases than RI cases. To cope with this data imbalance, the synthetic minority-oversampling technique (SMOTE) is used to balance the training data by generating artificial RI cases. Model ensembling is also applied to improve prediction skill further. The model’s Brier skill scores in the Atlantic and eastern North Pacific are higher than those of operational predictions for RI thresholds of 25 and 30 kt and comparable for 35 kt on the independent test data. Composites of the features associated with RI and non-RI situations provide physical insights for how the model discriminates between RI and non-RI cases. Prediction case studies are presented for some recent storms.


2019 ◽  
Vol 16 (8) ◽  
pp. 3404-3409
Author(s):  
Ala Adin Baha Eldin Mustafa Abdelaziz ◽  
Ka Fei Thang ◽  
Jacqueline Lukose

The most commonly used form of energy in houses, factories, buildings and agriculture is the electrical energy, however, in recent years, there has been an increase in electrical energy demand due to technology advancements and rise in population, therefore an appropriated forecasting system must be developed to predict these demands as accurately as possible. For this purpose, five models were selected, they are Bidirectional-Long Short Term Memory (Bi-LSTM), Feed Forward Neural Network (FFNN), Long Short Term Memory (LSTM), Nonlinear Auto Regressive network with eXogenous inputs (NARX) and Multiple Linear Regression (MLR). This paper will demonstrate the development of these selected models using MATLAB and an android mobile application, which is used to visualize and interact with the data. The performance of the selected models was evaluated by performing the Mean Absolute Percent Error (MAPE), the selected historical data used to perform the MAPE was obtained from Toronto, Canada and Tasmania, Australia, where the year 2006 until 2016 was used as training data and the year 2017 was used to test the MAPE of the historical data with the models’ data. It is observed that the NARX model had the least MAPE for both the regions resulting in 1.9% for Toronto, Canada and 2.9% for Tasmania, Australia. Google cloud is used as the IoT (Internet of Things) platform for NARX data model, the 2017 datasets is converted to JavaScript Object Notation (JSON) file using JavaScript programming language, for data visualization and analysis for the android mobile application.


2021 ◽  
Vol 5 (2) ◽  
pp. 524
Author(s):  
Annisa Farhah ◽  
Anggunmeka Luhur Prasasti ◽  
Marisa W Paryasto

In this modern era, restaurants are becoming very popular, especially in big cities. However, this can lead to density or queues of visitors at a restaurant, which should be avoided during the current Covid-19 pandemic. So that accurate information that can predict the density of restaurant will be very useful. In predicting the density of restaurants, data processing on the number of visitors obtained from one of the restaurants is carried out using artificial intelligence in the form of LSTM (Long Short Term Memory) RNN (Recurrent Neural Network). The results of the research on Recurrent Neural Network based on LSTM (Long Short Term Memory) at the best learning rate parameter of 0.001 and a maximum epoch of 2000 resulted in an MSE value of 0.00000278 on the training data and 0.0069 on the test data


Sign in / Sign up

Export Citation Format

Share Document