Conceptual design of the grazing-incidence focusing small-angle neutron scattering (gif-SANS) instrument at CPHS

2021 ◽  
pp. 1-5
Author(s):  
Huarui Wu ◽  
Weihang Hong ◽  
Yao Zhang ◽  
Pulin Bai ◽  
Wenbo Mo ◽  
...  

Developing small-angle neutron scattering techniques at compact accelerator-driven neutron sources (CANS) is of great importance for expanding the user community and advancing CANS capability. At the Compact Pulsed Hadron Source (CPHS) at Tsinghua University, neutron-focusing mirrors are under intensive research to address the challenge. A grazing-incidence focusing SANS (gif-SANS) project is initialized. It employs a nested supermirror assembly with a large collecting area to achieve ⩾ 10 5 n/s neutron intensity at Q min ⩽ 0.007 Å − 1 . It will equip two detectors, one being a 3He detector for normal Q-range measurements, and the other being a high-resolution detector for extending the Q min down to 10 − 3 Å − 1 . In this work, we present the conceptual design of the gif-SANS at CPHS. Such a scheme is conducive to enable high-performance SANS measurements at CANS.

1991 ◽  
Vol 24 (6) ◽  
pp. 994-998 ◽  
Author(s):  
F. M. A. Margaça ◽  
A. N. Falcão ◽  
J. F. Salgado ◽  
F. G. Carvalho

The problem of the optimization of small-angle neutron scattering instruments installed at steady neutron sources is discussed. The optimum solution is shown to be that in which full use is made of either the available luminous area of the source or the available hall space and not necessarily that corresponding to the equal-flight-paths design. Design criteria and their implementation are discussed taking into account space constraints on the instrument's layout. It is shown that the performance of currently operating SANS facilities can be substantially improved by following the optimization procedure proposed by the authors.


1997 ◽  
Vol 234-236 ◽  
pp. 240-241 ◽  
Author(s):  
J. Caspar ◽  
B. Dünges ◽  
R.G. Kirste ◽  
T. Heitz ◽  
A. Wiedenmann

2011 ◽  
Vol 110 (10) ◽  
pp. 102207 ◽  
Author(s):  
Katharina Theis-Bröhl ◽  
Durgamadhab Mishra ◽  
Boris P. Toperverg ◽  
Hartmut Zabel ◽  
Britta Vogel ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 1605-1615
Author(s):  
Zhiyuan Wang ◽  
Huarui Wu ◽  
Liang Chen ◽  
Liangwei Sun ◽  
Xuewu Wang

The neutron flux of the Compact Pulsed Hadron Source (CPHS) is about 2–3 orders of magnitude lower than that of large neutron sources, which means that the beam intensity should be improved to achieve good statistics. Multi-pinhole collimation can be used to obtain a lower Q with an acceptable beam intensity in a very small angle neutron scattering (VSANS) instrument and a higher beam intensity for a larger sample size in a small-angle neutron scattering (SANS) instrument. A new nine-pinhole structure is used in a SANS instrument at CPHS to achieve an acceptable range and resolution of Q and a higher beam intensity compared to single-pinhole collimation. The crosstalk issue associated with multi-pinhole collimation is addressed using an optimized algorithm to achieve a higher safety margin and a larger pinhole size with a higher beam intensity at the sample. Different collimator aperture structures are compared on the basis of their noise production. Experiments are performed to verify the theory of calculating reflection noise from the inner surface of the collimator's aperture and parasitic noise from the beveled collimator structure. From a simulated SANS experiment using cold neutrons in the SANS instrument, it is clarified that multi-pinhole collimators with an opening angle on the downstream side have better performance than those with an opening angle on the upstream side and straight-cut collimators. Compared with a single-pinhole collimation system, a nine-pinhole collimation system increases the intensity at the sample by approximately sevenfold when the sample size is increased by 20-fold for CPHS-SANS, and the signal-to-noise ratio is improved by exploiting a specific collimator aperture structure. Our goal is to install a multi-pinhole collimator based SANS instrument at CPHS in the future, and it is hoped that these results will serve to promote the utilization of multi-pinhole collimation systems at other facilities.


2006 ◽  
Vol 39 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Josef Innerlohinger ◽  
Mario Villa ◽  
Matthias Baron ◽  
Otto Glatter

Ultra-small-angle neutron scattering (USANS) probes the sameqregime as static light scattering (LS), making USANS an additional tool for the study of structures between 100 nm and 10 µm. Dense oil-in-water emulsions, which have already been characterized intensively by light scattering, are investigated in this study as a model system using USANS. The two basic problems of such scattering studies are the following: on the one hand, one has to use different scattering theories for USANS and LS, and on the other hand, in both cases one has to deal not only with particle interactions but also with multiple-scattering effects. For neutron scattering it is always possible to use the simpler Rayleigh–Debye–Gans (RDG) theory instead of the Lorenz–Mie theory, which generally describes light scattering from micrometre-sized globular objects. The samples have different contrasts in neutron and light scattering, such that only low-contrast (close to index match) LS data can be interpreted by the RDG theory. The data evaluation is performed by means of the generalized indirect Fourier transformation (GIFT) method, which enables the simultaneous calculation of the form and structure factors. The results are discussed and compared with those from light scattering experiments, taking into account the advantages of both methods. The effect of multiple scattering and its influence on data evaluation is also examined. Data evaluation by applying the GIFT method works well for both neutron and light scattering data, with results of comparable quality. The advantages of light scattering are the fast data acquisition and the large number of data points. USANS, on the other hand, covers a widerqrange and the problem of multiple scattering is not as severe as for light scattering, but still must not be neglected.


2021 ◽  
Vol 11 (3) ◽  
pp. 1216
Author(s):  
Xingxing Yao ◽  
Blake Avery ◽  
Miljko Bobrek ◽  
Lisa Debeer-Schmitt ◽  
Xiaosong Geng ◽  
...  

In an effort to upgrade and provide a unified and improved instrument control and data acquisition system for the Oak Ridge National Laboratory (ORNL) small-angle neutron scattering (SANS) instrument suite—biological small-angle neutron scattering instrument (Bio-SANS), the extended q-range small-angle neutron scattering diffractometer (EQ-SANS), the general-purpose small-angle neutron scattering diffractometer (GP-SANS)—beamline scientists and developers teamed up and worked closely together to design and develop a new system. We began with an in-depth analysis of user needs and requirements, covering all perspectives of control and data acquisition based on previous usage data and user feedback. Our design and implementation were guided by the principles from the latest user experience and design research and based on effective practices from our previous projects. In this article, we share details of our design process as well as prominent features of the new instrument control and data acquisition system. The new system provides a sophisticated Q-Range Planner to help scientists and users plan and execute instrument configurations easily and efficiently. The system also provides different user operation interfaces, such as wizard-type tool Panel Scan, a Scripting Tool based on Python Language, and Table Scan, all of which are tailored to different user needs. The new system further captures all the metadata to enable post-experiment data reduction and possibly automatic reduction and provides users with enhanced live displays and additional feedback at the run time. We hope our results will serve as a good example for developing a user-friendly instrument control and data acquisition system at large user facilities.


2019 ◽  
Vol 52 (4) ◽  
pp. 791-799 ◽  
Author(s):  
Satoshi Koizumi ◽  
Satoru Ueda ◽  
Takumi Inada ◽  
Yohei Noda ◽  
Robert A. Robinson

By using small-angle neutron scattering (SANS) reinforced by scanning electron microscopy, the fine structure of catalysts for polymer electrolyte fuel cells has been investigated. The experimental data resulting from contrast variation with mixed light and heavy water (H2O/D2O) are well described by a core–shell model with fluctuations in concentration between water and Nafion. In particular, SANS obtained with the mixed water ratio 30/70, which corresponds to a matching point between mixed water and Nafion, shows a broad scattering maximum, which is attributed to a 5 nm-thick Nafion shell on the surface of the larger carbon particles. After swelling by water, the ionomer layer absorbs water at the 17 wt% level. By changing the H2O/D2O ratio, it was further confirmed that the catalyst with the ionomer exhibits water repellence, whereas the bare catalyst without the ionomer is wetted by water. Because it is very difficult to extract more information, for instance regarding the Pt–Nafion interactions, by means of small-angle scattering, reflectometry and grazing-incidence scattering experiments with neutrons should be attempted on a model catalyst prepared on a flat substrate.


2009 ◽  
Vol 167 (1) ◽  
pp. 73-79 ◽  
Author(s):  
W. Kreuzpaintner ◽  
J.-F. Moulin ◽  
D. Lott ◽  
R. Kampmann ◽  
M. Haese-Seiller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document