scholarly journals Characterization and Imaging of Localized Thickness Loss in GFRP with Ka-Band Microwave Open-Ended Waveguides

Author(s):  
Jinhua Hu ◽  
Yong Li ◽  
Jianguo Tan ◽  
Wenjia Li ◽  
Zhenmao Chen

Glass Fibre Reinforcement Plastic (GFRP) is widely used in engineering fields including aerospace, marine and construction, etc. During practical service, it is prone to the impact damage leading to the Localized Thickness Loss (LTL) which severely influences the integrity and safety of GFRP. To detect and evaluate LTL in GFRP, common Non-Destructive Testing (NDT) techniques such as ultrasonic testing and thermography are usually applied. Complementary to these methods, microwave NDT has been found to be one of the promising techniques in quantitative evaluation of GFRP. In this paper, the characterization and imaging of LTL in GFRP by microwave NDT are intensively investigated. A 2D Finite Element Model (FEM) with the Ka-band open-ended waveguide and GFRP sample subject to LTL has been set up and adopted for analysis of field characteristics and testing signals. Following that, an experimental investigation is conducted to further study the feasibility of LTL imaging by microwave NDT with the Ka-band open-ended waveguide. The results from simulations and experiments indicate the applicability of Ka-band microwave open-ended waveguide for detection and evaluation of LTL in GFRP.

Sign in / Sign up

Export Citation Format

Share Document