scholarly journals Towards a Knowledge Graph-Based Explainable Decision Support System in Healthcare

Author(s):  
Enayat Rajabi ◽  
Kobra Etminani

The decisions derived from AI-based clinical decision support systems should be explainable and transparent so that the healthcare professionals can understand the rationale behind the predictions. To improve the explanations, knowledge graphs are a well-suited choice to be integrated into eXplainable AI. In this paper, we introduce a knowledge graph-based explainable framework for AI-based clinical decision support systems to increase their level of explainability.

2017 ◽  
Vol 2 (2) ◽  
pp. 20-37
Author(s):  
Meenakshi Sharmi ◽  
Himanshu Aggarwal

Information technology playing a prominent role in the field of medical by incorporating the clinical decision support system (CDSS) in their routine practices. CDSS is a computer based interactive program to assist the physician to make the right decision at right time. Nowadays, clinical decision support systems are a dynamic research area in the field of computers, but the lack of understanding, as well as functions of the system, make adoption slow by physicians and patients. The literature review of this article focuses on the overview of legacy CDSS, the kind of methodologies and classifiers employed to prepare such a decision support system using a non-technical approach to the physician and the strategy-makers. This article provides understanding of the clinical decision support along with the gateway to physician, and to policy-makers to develop and deploy decision support systems as a healthcare service to make the quick, agile and right decision. Future directions to handle the uncertainties along with the challenges of clinical decision support systems are also enlightened in this study.


The BACIS program is an example of an e-health decision support system, and therefore a chapter focusing on the topic of decision support systems is needed as part of the background and context to the BACIS program study. The chapter begins with a discussion of the design of decision support systems. In this discussion, the software development methodologies used in their development is explained. Then various architectures for their design are considered. This is followed by a section on implementation of decision support systems in developing country contexts. The chapter closes with a discussion of the Clinical Decision Support (CDS) roadmap of the International Medical Informatics Association.


2017 ◽  
Vol 141 (4) ◽  
pp. 585-595 ◽  
Author(s):  
Nicolas Delvaux ◽  
Katrien Van Thienen ◽  
Annemie Heselmans ◽  
Stijn Van de Velde ◽  
Dirk Ramaekers ◽  
...  

Context.— Inappropriate laboratory test ordering has been shown to be as high as 30%. This can have an important impact on quality of care and costs because of downstream consequences such as additional diagnostics, repeat testing, imaging, prescriptions, surgeries, or hospital stays. Objective.— To evaluate the effect of computerized clinical decision support systems on appropriateness of laboratory test ordering. Data Sources.— We used MEDLINE, Embase, CINAHL, MEDLINE In-Process and Other Non-Indexed Citations, Clinicaltrials.gov, Cochrane Library, and Inspec through December 2015. Investigators independently screened articles to identify randomized trials that assessed a computerized clinical decision support system aimed at improving laboratory test ordering by providing patient-specific information, delivered in the form of an on-screen management option, reminder, or suggestion through a computerized physician order entry using a rule-based or algorithm-based system relying on an evidence-based knowledge resource. Investigators extracted data from 30 papers about study design, various study characteristics, study setting, various intervention characteristics, involvement of the software developers in the evaluation of the computerized clinical decision support system, outcome types, and various outcome characteristics. Conclusions.— Because of heterogeneity of systems and settings, pooled estimates of effect could not be made. Data showed that computerized clinical decision support systems had little or no effect on clinical outcomes but some effect on compliance. Computerized clinical decision support systems targeted at laboratory test ordering for multiple conditions appear to be more effective than those targeted at a single condition.


2020 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Shamim Kiyani ◽  
Sanaz Abasi ◽  
Zahra Koohjani ◽  
Azam Aslani

Introduction: Diabetes is a public health problem which is originating an increment in the demand for health services. There is an obvious gap exists between actual clinical practice and optimal patient care, Clinical decision support systems (CDSSs) have been promoted as a promising approach that targets safe and effective diabetes management. The purpose of this article is reviewing diabetes decision support systems based on system design metrics, type and purpose of decision support systems. Materials and Methods: The literature search was performed in peer reviewed journals indexed in PubMed by keywords such as medical decision making, clinical decision support systems, Reminder systems, diabetes, interface, interaction, information to 2019. This article review the diabetes decision support systems based on system design metrics (interface, interaction, and information), type and purpose of decision support system. Results: 32 of the 35 articles were decision support systems that provided specific warnings, reminders, a set of physician guidelines, or other recommendations for direct action. The most important decisions of the systems were support for blood glucose control and insulin dose adjustment, as well as 13 warning and reminder articles. Of the 35 articles, there were 21 user interface items (such as simplicity, readability, font sizes and ect), 23 interaction items (such as Fit, use selection tools, facilitate ease of use and ect. ) and 31 item information items (such as Content guidance, diagnostic support and concise and ect ).Discussion: This study identified important aspects of designing decision support system, It can be applied not only to diabetic patients but also to other decision support systems.Conclusion: Most decision support systems take into account a number of design criteria; system designers can look at design aspects to improve the efficiency of these systems. Decision support system evaluation models can also be added to the factors under consideration.


2020 ◽  
pp. 553-568
Author(s):  
Meenakshi Sharmi ◽  
Himanshu Aggarwal

Information technology playing a prominent role in the field of medical by incorporating the clinical decision support system (CDSS) in their routine practices. CDSS is a computer based interactive program to assist the physician to make the right decision at right time. Nowadays, clinical decision support systems are a dynamic research area in the field of computers, but the lack of understanding, as well as functions of the system, make adoption slow by physicians and patients. The literature review of this article focuses on the overview of legacy CDSS, the kind of methodologies and classifiers employed to prepare such a decision support system using a non-technical approach to the physician and the strategy-makers. This article provides understanding of the clinical decision support along with the gateway to physician, and to policy-makers to develop and deploy decision support systems as a healthcare service to make the quick, agile and right decision. Future directions to handle the uncertainties along with the challenges of clinical decision support systems are also enlightened in this study.


1993 ◽  
Vol 32 (01) ◽  
pp. 12-13 ◽  
Author(s):  
M. A. Musen

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


2006 ◽  
Vol 45 (05) ◽  
pp. 523-527 ◽  
Author(s):  
A. Abu-Hanna ◽  
B. Nannings

Summary Objectives: Decision Support Telemedicine Systems (DSTS) are at the intersection of two disciplines: telemedicine and clinical decision support systems (CDSS). The objective of this paper is to provide a set of characterizing properties for DSTSs. This characterizing property set (CPS) can be used for typing, classifying and clustering DSTSs. Methods: We performed a systematic keyword-based literature search to identify candidate-characterizing properties. We selected a subset of candidates and refined them by assessing their potential in order to obtain the CPS. Results: The CPS consists of 14 properties, which can be used for the uniform description and typing of applications of DSTSs. The properties are grouped in three categories that we refer to as the problem dimension, process dimension, and system dimension. We provide CPS instantiations for three prototypical applications. Conclusions: The CPS includes important properties for typing DSTSs, focusing on aspects of communication for the telemedicine part and on aspects of decisionmaking for the CDSS part. The CPS provides users with tools for uniformly describing DSTSs.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
S M Jansen-Kosterink ◽  
M Cabrita ◽  
I Flierman

Abstract Background Clinical Decision Support Systems (CDSSs) are computerized systems using case-based reasoning to assist clinicians in making clinical decisions. Despite the proven added value to public health, the implementation of CDSS clinical practice is scarce. Particularly, little is known about the acceptance of CDSS among clinicians. Within the Back-UP project (Project Number: H2020-SC1-2017-CNECT-2-777090) a CDSS is developed with prognostic models to improve the management of Neck and/or Low Back Pain (NLBP). Therefore, the aim of this study is to present the factors involved in the acceptance of CDSSs among clinicians. Methods To assess the acceptance of CDSSs among clinicians we conducted a mixed method analysis of questionnaires and focus groups. An online questionnaire with a low-fidelity prototype of a CDSS (TRL3) was sent to Dutch clinicians aimed to identify the factors influencing the acceptance of CDSSs (intention to use, perceived threat to professional autonomy, trusting believes and perceived usefulness). Next to this, two focus groups were conducted with clinicians addressing the general attitudes towards CDSSs, the factors determining the level of acceptance, and the conditions to facilitate use of CDSSs. Results A pilot-study of the online questionnaire is completed and the results of the large evaluation are expected spring 2020. Eight clinicians participated in two focus groups. After being introduced to various types of CDSSs, participants were positive about the value of CDSS in the care of NLBP. The clinicians agreed that the human touch in NLBP care must be preserved and that CDSSs must remain a supporting tool, and not a replacement of their role as professionals. Conclusions By identifying the factors hindering the acceptance of CDSSs we can draw implications for implementation of CDSSs in the treatment of NLBP.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elizabeth Ford ◽  
Natalie Edelman ◽  
Laura Somers ◽  
Duncan Shrewsbury ◽  
Marcela Lopez Levy ◽  
...  

Abstract Background Well-established electronic data capture in UK general practice means that algorithms, developed on patient data, can be used for automated clinical decision support systems (CDSSs). These can predict patient risk, help with prescribing safety, improve diagnosis and prompt clinicians to record extra data. However, there is persistent evidence of low uptake of CDSSs in the clinic. We interviewed UK General Practitioners (GPs) to understand what features of CDSSs, and the contexts of their use, facilitate or present barriers to their use. Methods We interviewed 11 practicing GPs in London and South England using a semi-structured interview schedule and discussed a hypothetical CDSS that could detect early signs of dementia. We applied thematic analysis to the anonymised interview transcripts. Results We identified three overarching themes: trust in individual CDSSs; usability of individual CDSSs; and usability of CDSSs in the broader practice context, to which nine subthemes contributed. Trust was affected by CDSS provenance, perceived threat to autonomy and clear management guidance. Usability was influenced by sensitivity to the patient context, CDSS flexibility, ease of control, and non-intrusiveness. CDSSs were more likely to be used by GPs if they did not contribute to alert proliferation and subsequent fatigue, or if GPs were provided with training in their use. Conclusions Building on these findings we make a number of recommendations for CDSS developers to consider when bringing a new CDSS into GP patient records systems. These include co-producing CDSS with GPs to improve fit within clinic workflow and wider practice systems, ensuring a high level of accuracy and a clear clinical pathway, and providing CDSS training for practice staff. These recommendations may reduce the proliferation of unhelpful alerts that can result in important decision-support being ignored.


Sign in / Sign up

Export Citation Format

Share Document