Head tilt response: A complementary test to the Subjective Visual Vertical

2010 ◽  
Vol 20 (5) ◽  
pp. 381-389 ◽  
Author(s):  
Dario Geisinger ◽  
Enrique Ferreira ◽  
Alejo Suarez ◽  
Hamlet Suarez
2019 ◽  
Vol 122 (2) ◽  
pp. 788-796
Author(s):  
Nynke Niehof ◽  
Florian Perdreau ◽  
Mathieu Koppen ◽  
W. Pieter Medendorp

The brain is thought to use rotation cues from both the vestibular and optokinetic system to disambiguate the gravito-inertial force, as measured by the otoliths, into components of linear acceleration and gravity direction relative to the head. Hence, when the head is stationary and upright, an erroneous percept of tilt arises during optokinetic roll stimulation (OKS) or when an artificial canal-like signal is delivered by means of galvanic vestibular stimulation (GVS). It is still unknown how this percept is affected by the combined presence of both cues or how it develops over time. Here, we measured the time course of the subjective visual vertical (SVV), as a proxy of perceived head tilt, in human participants ( n = 16) exposed to constant-current GVS (1 and 2 mA, cathodal and anodal) and constant-velocity OKS (30°/s clockwise and counterclockwise) or their combination. In each trial, participants continuously adjusted the orientation of a visual line, which drifted randomly, to Earth vertical. We found that both GVS and OKS evoke an exponential time course of the SVV. These time courses have different amplitudes and different time constants, 4 and 7 s respectively, and combine linearly when the two stimulations are presented together. We discuss these results in the framework of observer theory and Bayesian state estimation. NEW & NOTEWORTHY While it is known that both roll optokinetic stimuli and galvanic vestibular stimulation affect the percept of vertical, how their effects combine and develop over time is still unclear. Here we show that both effects combined linearly but are characterized by different time constants, which we discuss from a probabilistic perspective.


Author(s):  
Mahmoud Rezvani Amin ◽  
Moslem Shaabani ◽  
Mohsen Vahedi

Background and Aim: The subjective visual vertical (SVV) is commonly considered as an indicator of the sense of orientation and attributed to the utricular function. The present study examined the impact of different head tilt angles on SVV among the normal individuals. Methods: SVV was measured in 47 normal participants (30 males and 17 females; mean ± SD age: 22.14 ± 3.46) using a virtual goggle and forced-choice paradigm and was applied twice in 0º, 15º, 30° and 45º to the left or to the right. In addition, difference in mean of SVV in zero and non-zero positions was compared. Results: There was a statistically significant difference between the mean SVV results of 0º and 15º (p ˂ 0.001). The comparison of mean SVV results between 0º and 30º, and between 0º and 45º were not significant (p > 0.05). In addition, comparison of SVV results between rightward and leftward tilt of 15º was statistically significant (p ˂ 0.001). The latter comparison was not significant for 30º and 45º (p > 0.05). Conclusion: Our results showed that head tilt angle of 15º have a substantial impact on the virtual SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in clinical populations.  Keywords: Head tilt angle; subjective visual vertical; virtual goggle; roll plane; utricle; healthy adults


2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Marion Luyat ◽  
Myriam Noël ◽  
Vincent Thery ◽  
Edouard Gentaz

Neurology ◽  
2014 ◽  
Vol 82 (22) ◽  
pp. 1968-1975 ◽  
Author(s):  
T.-H. Yang ◽  
S.-Y. Oh ◽  
K. Kwak ◽  
J.-M. Lee ◽  
B.-S. Shin ◽  
...  

2011 ◽  
Vol 69 (3) ◽  
pp. 509-512 ◽  
Author(s):  
Martha Funabashi ◽  
Natya N.L. Silva ◽  
Luciana M. Watanabe ◽  
Taiza E.G Santos-Pontelli ◽  
José Fernando Colafêmina ◽  
...  

Subjective visual vertical (SVV) evaluates the individual's capacity to determine the vertical orientation. Using a neck brace (NB) allow volunteers' heads fixation to reduce cephalic tilt during the exam, preventing compensatory ocular torsion and erroneous influence on SVV result. OBJECTIVE: To analyze the influence of somatosensory inputs caused by a NB on the SVV. METHOD: Thirty healthy volunteers performed static and dynamic SVV: six measures with and six without the NB. RESULTS: The mean values for static SVV were -0.075º±1.15º without NB and -0.372º±1.21º with NB. For dynamic SVV in clockwise direction were 1.73º±2.31º without NB and 1.53º±1.80º with NB. For dynamic SVV in counterclockwise direction was -1.50º±2.44º without NB and -1.11º±2.46º with NB. Differences between measurements with and without the NB were not statistically significant. CONCLUSION: Although the neck has many sensory receptors, the use of a NB does not provide sufficient afferent input to change healthy subjects' perception of visual verticality.


Sign in / Sign up

Export Citation Format

Share Document