scholarly journals Numerical modeling of the stability of parametric vibrations of a high thin-wall shell of negative Gaussian curvature

2018 ◽  
Vol 0 (101) ◽  
pp. 45-59
Author(s):  
Olga Lukіanchenko ◽  
Oksana Paliy
2014 ◽  
Vol 887-888 ◽  
pp. 1328-1332
Author(s):  
Wang Biao Qiu ◽  
Wei Xing Chen

The article based on different frequency pulse equiponderance electromagnetic destressing comparison experiment, using vertical optical measurement to survey the changes of bearing ferrules size, study the difference between the effect of different frequency electromagnetic in removing residual stress, find the frequency of magnetic treatment pulse that help to maintain the stability of the thin-wall bearing collars' size, effectively improve the cycle of bearing ferrules process .


Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14208-14214 ◽  
Author(s):  
Zhongwei Zhang ◽  
Jie Chen ◽  
Baowen Li

From the mathematic category of surface Gaussian curvature, carbon allotropes can be classified into three types: zero curvature, positive curvature, and negative curvature.


2017 ◽  
Vol 46 (6) ◽  
pp. 1643-1660 ◽  
Author(s):  
Michel Rickhaus ◽  
Marcel Mayor ◽  
Michal Juríček

Chiral non-planar polyaromatic systems that display zero, positive or negative Gaussian curvature are analysed and their potential to ‘encode’ chirality of larger sp2-carbon allotropes is evaluated. Shown is a hypothetical peanut-shaped carbon allotrope, where helical chirality results from the interplay of various curvature types.


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
V. D. Pustovitov

Plasma stabilization due to a nearby conducting wall can provide access to better performance in some scenarios in tokamaks. This was proved by experiments with an essential gain in${\it\beta}$and demonstrated as a long-lasting effect at sufficiently fast plasma rotation in the DIII-D tokamak (see, for example, Straitet al.,Nucl. Fusion, vol. 43, 2003, pp. 430–440). The rotational stabilization is the central topic of this review, though eventually the mode rotation gains significance. The analysis is based on the first-principle equations describing the energy balance with dissipation in the resistive wall. The method emphasizes derivation of the dispersion relations for the modes which are faster than the conventional resistive wall modes, but slower than the ideal magnetohydrodynamics modes. Both the standard thin wall and ideal-wall approximations are not valid in this range. Here, these are replaced by an approach incorporating the skin effect in the wall. This new element in the stability theory makes the energy sink a nonlinear function of the complex growth rate. An important consequence is that a mode rotating above a critical level can provide a damping effect sufficient for instability suppression. Estimates are given and applications are discussed.


2011 ◽  
Vol 255-260 ◽  
pp. 921-925 ◽  
Author(s):  
Hai Jun Wu ◽  
Yu Qiang Kang ◽  
Lei Zhang

Analyzing the basic theory of stability, with a high pier of large span prestressed concrete continuous bridge as the example, the stability was analyzed when constructing, considering wind load, hanging basket, pier etc. Both eigenvalue and mode are got for the longest cantilever ting condition, the sensitivity of stability to various loads being analyzed. It is concluded that the unbalanced weight and the falling of basket are the main factors.


1992 ◽  
Vol 258 ◽  
Author(s):  
D. Fischer ◽  
N. Pellaton ◽  
H. Keppner ◽  
A. Shah ◽  
C. M. Fortmann

ABSTRACTThis work reports on attempts to tailor the electric field of a-Si:H solar cells by the graded low-level doping of the intrinsic layer to optimize conversion efficiency in the degraded state. Based on wavelength dependent collection measurements and numerical modeling, the degradation behavior of doped and undoped cells is explained in terms of the interaction of dopants and the light-induced space-charge. Low level doping is shown to shift the electric field away from the p/i interface towards the bulk of the i-layer. This results in a better carrier collection from the back part of the solar cell, and solar cells with improved stabilized red light conversion efficiency can be realized. These cells can be readily applied as bottom cells of stacked solar cells.


Sign in / Sign up

Export Citation Format

Share Document