Leukocyte Tyrosine Kinase Receptor

2020 ◽  
Author(s):  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Tukur Ibrahim ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

Abstract Background The discovery of epidermal growth factor receptor (EGFR) inhibitors for the treatment of lung cancer, most especially non-small cell lung cancer (NSCLC), was one of the major challenges encountered by the medicinal chemist in the world. The treatment of EGFR tyrosine kinase to manage NSCLCs becomes an urgent therapeutic necessity. NSCLC was the foremost cause of cancer mortality worldwide. Therefore, there is a need to develop more EGFR inhibitors due to the development of drug resistance by the mutation. This research is aimed at designing new EGFR inhibitors using a structure-based design approach. Structure-based drug design comprises several steps such as protein structure retrieval and preparation, ligand library preparation, docking, and structural modification on the best hit compound to design new ones. Result Molecular docking virtual screening on fifty sets of quinazoline derivatives/epidermal growth factor receptor inhibitors against their target protein (EGFR tyrosine kinase receptor PDB entry: 3IKA) and pharmacokinetic profile predictions were performed to identify hit compounds with promising affinities toward their target and good pharmacokinetic profiles. The hit compounds identified were compound 6 with a binding affinity of − 9.3 kcal/mol, compounds 5 and 8, each with a binding affinity of − 9.1 kcal/mol, respectively. The three hit compounds bound to EGFR tyrosine kinase receptor via four different types of interactions which include conventional hydrogen bond, carbon-hydrogen bond, electrostatic, and hydrophobic interactions, respectively. The best hit (compound 6) among the 3 hit compounds was retained as a template and used to design sixteen new EGFR inhibitors. The sixteen newly designed compounds were also docked into the active site of EGFR tyrosine kinase receptor to study their mode of interactions with the receptor. The binding affinities of these newly designed compounds range from − 9.5 kcal/mol to − 10.2 kcal/mol. The pharmacokinetic profile predictions of these newly designed compounds were further examined and found to be orally bioavailable with good absorption, low toxicity level, and permeable properties. Conclusion The sixteen newly designed EGFR inhibitors were found to have better binding affinities than the template used in the designing process and afatinib the positive control (an FDA approved EGFR inhibitor). None of these designed compounds was found to violate more than the permissible limit set by RO5. More so, the newly designed compounds were found to have good synthetic accessibility which indicates that these newly designed compounds can be easily synthesized in the laboratory.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2341
Author(s):  
Normann Steiner ◽  
Karin Jöhrer ◽  
Selina Plewan ◽  
Andrea Brunner-Véber ◽  
Georg Göbel ◽  
...  

Therapy resistance remains a major challenge in the management of multiple myeloma (MM). We evaluated the expression of FLT3 tyrosine kinase receptor (FLT3, CD135) in myeloma cells as a possible clonal driver. FLT3 expression was analyzed in bone marrow biopsies of patients with monoclonal gammopathy of undetermined significance or smoldering myeloma (MGUS, SMM), newly diagnosed MM (NDMM), and relapsed/refractory MM (RRMM) by immunohistochemistry (IHC). FLT3 gene expression was analyzed by RNA sequencing (RNAseq) and real-time PCR (rt-PCR). Anti-myeloma activity of FLT3 inhibitors (midostaurin, gilteritinib) was tested in vitro on MM cell lines and primary MM cells by 3H-tymidine incorporation assays or flow cytometry. Semi-quantitative expression analysis applying a staining score (FLT3 expression IHC-score, FES, range 1–6) revealed that a high FES (>3) was associated with a significantly shorter progression-free survival (PFS) in NDMM and RRMM patients (p = 0.04). RNAseq and real-time PCR confirmed the expression of FLT3 in CD138-purified MM samples. The functional relevance of FLT3 expression was corroborated by demonstrating the in vitro anti-myeloma activity of FLT3 inhibitors on FLT3-positive MM cell lines and primary MM cells. FLT3 inhibitors might offer a new targeted therapy approach in a subgroup of MM patients displaying aberrant FLT3 signaling.


2015 ◽  
Vol 14 (1) ◽  
pp. 153-159 ◽  
Author(s):  
Slavica Matić ◽  
Elena Quaglino ◽  
Lucia Arata ◽  
Federica Riccardo ◽  
Mattia Pegoraro ◽  
...  

2017 ◽  
Vol 45 (2) ◽  
pp. 549-555 ◽  
Author(s):  
Ting Wang ◽  
Haibo Li ◽  
Jingjing Xiang ◽  
Bin Wei ◽  
Qin Zhang ◽  
...  

Objective To explore the aetiology of congenital insensitivity to pain with anhidrosis (CIPA) in two Chinese siblings with typical CIPA symptoms including insensitivity to pain, inability to sweat, and self-mutilating behaviours. Methods Clinical examination and genetic testing were conducted of all available family members, and the findings were used to create a pedigree. Mutation screening using PCR amplification and DNA Sanger sequencing of the entire neurotrophic tyrosine kinase receptor type 1 gene ( NTRK1) including intron–exon boundaries was used to identify mutations associated with CIPA. Results A novel nonsense mutation (c.7C > T, p. Arg3Ter) and a known splice-site mutation (c.851-33 T > A) were detected in NTRK1 and shown to be associated with CIPA. Conclusion Our findings expand the known mutation spectrum of NTRK1 and provide insights into the aetiology of CIPA.


2012 ◽  
Vol 31 (6) ◽  
pp. 570-579 ◽  
Author(s):  
Paolo Cossu-Rocca ◽  
Marcella Contini ◽  
Maria Gabriela Uras ◽  
Maria Rosaria Muroni ◽  
Francesca Pili ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document