scholarly journals Cytoplasmic Phosphatidylinositol Transfer Protein 1

2020 ◽  
Author(s):  
Cell ◽  
1993 ◽  
Vol 74 (5) ◽  
pp. 919-928 ◽  
Author(s):  
Geraint M.H. Thomas ◽  
Emer Cunningham ◽  
Amanda Fensome ◽  
Andrew Ball ◽  
Nicholas F. Totty ◽  
...  

2006 ◽  
Vol 26 (7-8) ◽  
pp. 1151-1164 ◽  
Author(s):  
Małgorzata Chalimoniuk ◽  
Gerry T. Snoek ◽  
Agata Adamczyk ◽  
Andrzej Małecki ◽  
Joanna B. Strosznajder

1999 ◽  
Vol 55 (2) ◽  
pp. 522-524 ◽  
Author(s):  
Randall L. Oliver ◽  
Jacqueline M. Tremblay ◽  
George M. Helmkamp ◽  
Lynwood R. Yarbrough ◽  
Natalie W. Breakfield ◽  
...  

Phosphatidylinositol-transfer protein (PITP) is a soluble, ubiquitously expressed, highly conserved protein encoded by two genes in humans, rodents and other mammals. A cDNA encoding the alpha isoform of the rat gene was expressed to high levels in Escherichia coli, the protein purified and the homogeneous protein used for crystallization studies. Crystals of rat PITP-α were obtained by vapor-diffusion techniques using the sitting-drop method. Crystals grow within two weeks by vapor-diffusion techniques in the presence of polyethylene glycol 4000. Both crystal forms pack in the monoclinic space group P21. Crystal form I has unit-cell parameters a = 44.75, b = 74.25, c = 48.32 Å and β = 114.14°. Unit-cell parameters for crystal form II are a = 47.86, b = 73.59, c = 80.49 Å and β = 98.54°. Crystal form I has a Vm of 2.295 Å3 Da−1 and an estimated solvent content of 46.4% with one molecule per asymmetric unit, while crystal form II has a Vm of 2.196 Å3 Da−1 and an estimated solvent content of 44.0%, assuming two molecules per asymmetric unit.


Sign in / Sign up

Export Citation Format

Share Document