scholarly journals Early Activation Antigen CD69

2020 ◽  
Author(s):  
2008 ◽  
Vol 81 (3) ◽  
pp. 466-474 ◽  
Author(s):  
L. K. L. JUNG ◽  
B. F. HAYNES ◽  
S. NAKAMURA ◽  
S. PAHWA ◽  
S. M. FU

1989 ◽  
Vol 169 (3) ◽  
pp. 677-689 ◽  
Author(s):  
S Nakamura ◽  
S S Sung ◽  
J M Bjorndahl ◽  
S M Fu

A new mAb G38 was generated against purified EA 1, an early activation antigen. In immunoprecipitation, it was reactive with the same complex precipitated by the initial anti-EA 1 mAb P8. mAb G38 augmented PMA-induced proliferation of PBMC. It was shown to be mitogenic for purified T cells in collaboration with PMA in a dose-dependent manner. This effect was independent of monocytes and other accessory cells. mAb G38 augmented PMA-induced IL-2-R expression. In conjunction with PMA, it induced IL-2 synthesis and secretion. Its effects on IL-2-R and IL-2 expression were documented at both protein and mRNA levels. Both anti-EA 1 mAbs did not induce Ca2+ influx by themselves in PMA-treated T cells. However, the addition of second anti-mouse Ig antibodies induced readily detectable increases in [Ca2+]i. Ca2+-mediated pathways may be utilized as the transduction signal mechanisms. mAb Leu-23 was shown to be reactive with EA 1. mAb Leu-23 was also mitogenic for T cells in the presence of PMA. These findings provide evidence for a functional role for EA 1 in T cell activation and proliferation.


Biochemistry ◽  
2013 ◽  
Vol 52 (51) ◽  
pp. 9403-9403
Author(s):  
Jiřı́ Pavlı́ček ◽  
Bruno Sopko ◽  
Rüdiger Ettrich ◽  
Vladimı́r Kopecký ◽  
Vladimı́r Baumruk ◽  
...  

1992 ◽  
Vol 98 (5) ◽  
pp. 771-776 ◽  
Author(s):  
Thomas Bieber ◽  
Armin Rieger ◽  
Georg Stingl ◽  
Erika Sander ◽  
Petra Wanek ◽  
...  

1991 ◽  
Vol 28 (1-2) ◽  
pp. 159-168 ◽  
Author(s):  
Franca Gerosa ◽  
Marina Tommasi ◽  
Maria Scardoni ◽  
Roberto S. Accolla ◽  
Tullio Pozzan ◽  
...  

1986 ◽  
Vol 164 (6) ◽  
pp. 1988-2005 ◽  
Author(s):  
T Hara ◽  
L K Jung ◽  
J M Bjorndahl ◽  
S M Fu

With human T cells activated by 12-o-tetradecanoyl phorbol-13-acetate (TPA) as immunogen, an IgG2a mAb, early activation antigen 1 (EA 1), was generated against a 60-kD protein with disulfide-linked 28-kD and 32-kD subunits. Both subunits were phosphorylated. The antigen, EA 1, was readily detected on approximately 60% of isolated and cryopreserved thymocytes, as determined by indirect immunofluorescence. A low level of EA 1 expression was detectable on 6-7% of blood lymphocytes. TPA-activated T cells expressed EA 1 as early as 30 min after activation. By 1 h, 85-90% of the T cells stained with mAb EA 1. By 3-4 h, the expression of EA 1 was detected in greater than 95% of the T cells. Although the percentages of EA 1+ T cells did not change, the intensity of staining increased slightly. After 18-24 h, both the percentage of EA 1+ cells and the intensity of staining decreased gradually. TPA-induced EA 1 expression was independent of monocytes. EA 1 expression was slightly delayed in T cells that were isolated without the rosette selection and treated with TPA. Nevertheless, greater than 85% of these T cells expressed EA 1 within 1 h, and the maximal number of EA 1+ T cells was also detected at 3-4 h. In T cell populations with 1-2% monocytes, about 50-90% of the PHA- or Con A-activated T cells expressed EA 1 with a slower kinetics. EA 1 expression preceded that of IL-2-R in these activation processes. Similarly, T cells activated by soluble antigens (tetanus toxoid and PPD) and alloantigens in MLR also expressed EA 1 after a longer incubation. Approximately 20% of the T cells stained for EA 1 at day 6. EA 1 expression was not limited to activated T cells. B cells activated by TPA or anti-IgM antibody plus B cell growth factor expressed EA 1. The kinetics of EA 1 expression was markedly slower and the staining was less intense. Repeated attempts to detect EA 1 on resting and TPA-activated monocytes and granulocytes have not been successful. However, the detection of EA 1 in nonlymphoid cell lines would indicate that EA 1 may have a broader cell distribution. EA 1 expression was due to de novo synthesis, as the induction of EA 1 was blocked by cycloheximide and actinomycin D.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 157 (2) ◽  
pp. 461-472 ◽  
Author(s):  
T Cotner ◽  
J M Williams ◽  
L Christenson ◽  
H M Shapiro ◽  
T B Strom ◽  
...  

Cell-surface antigens that are induced to appear on T cells activated by the lectin phytohemagglutinin-P (PHA) can be classified both on the basis of the kinetics of their appearance and on their growth-association properties. Seven distinct T cell activation antigens, defined by monoclonal antibodies, were classified as early, intermediate, or late antigens based on their temporal appearance relative to DNA synthesis. Four antigens, the transferrin receptor, the T cell activation antigen Tac, the 4F2 antigen, and the 49.9 antigen were early antigens, whereas the OKT10 antigen appeared at intermediate times and both HLA-DR and antigen 19.2 appeared late. The use of a dye, Hoechst 33342, which stains DNA stoichiometrically, allowed the simultaneous analysis of immunofluorescence and cell cycle position of individual cells. This analysis unexpectedly revealed that essentially all cells in the proliferative phase of the cell cycle expressed each of the four early-activation antigens. The correlation between expression of the four early-activation antigens and T cell proliferation suggests that these molecules are important for the growth of all T cells. The relationship of two of these activation antigens, known to be the receptors for transferrin and interleukin 2, a T cell growth factor, is discussed with special reference to the roles of their ligands in supporting the growth of T cells.


Biochemistry ◽  
2003 ◽  
Vol 42 (31) ◽  
pp. 9295-9306 ◽  
Author(s):  
Jiří Pavlíček ◽  
Bruno Sopko ◽  
Rüdiger Ettrich ◽  
Vladimír Kopecký, ◽  
Vladimír Baumruk ◽  
...  

1997 ◽  
Vol 155 (3) ◽  
pp. 491-500 ◽  
Author(s):  
JJ Corrales ◽  
A Lopez ◽  
J Ciudad ◽  
MT Mories ◽  
JM Miralles ◽  
...  

At present, the in vivo response of T, B and natural killer (NK) cells to antithyroid drug therapy remains largely unknown. In the present study, we have prospectively analyzed the in vivo effects of methimazole treatment on a large number of circulating T and NK cell subsets, some of them expressing cell surface activation antigens involved in the very early phase of the immune response, in a group of 17 hyperthyroid, untreated patients with Graves' disease (GD). As one of the first events during T cell activation is the expression of interleukin (IL) receptors, we also studied the binding of IL-2 and IL-6 to T cells. Patients with Graves' disease were sequentially studied at diagnosis/before treatment (day 0) and 7, 14, 30, 90 and 180 days after methimazole therapy. The results were compared with both a group of 19 age- and sex-matched control volunteers and a group of 20 untreated/euthyroid patients with Graves' disease in long-term remission. The combination of flow cytometry and three-color immunofluorescence revealed a clear (P < 0.01) decrease in the percentage of NK cells before and during the whole course of therapy with respect to both controls and patients with Graves' disease who were in long-term remission. Before therapy, a marked increase (P < 0.001) in the ratio of B to NK cells was also observed; thereafter, a slight decrease in this ratio was observed, although normal values were detected only in patients in long-term remission. Expression of the CD69 early activation antigen in the hyperthyroid untreated patients with Graves' disease was clearly increased (P < 0.01) with respect to both controls and patients with Graves' disease who were in long-term remission. This abnormal CD69 expression was found to be significantly reduced (P < 0.001) by methimazole therapy, and this represents a new effect of the drug. Expression of the low-affinity receptor for IL-2 (CD25)--another early T cell activation marker--was not altered in Graves' disease, but the binding of IL-2 and IL-6 to T cells exhibited a progressive and parallel increase during the first 30 days of therapy, decreasing thereafter. Our results show that methimazole therapy downregulates the abnormally high expression of the CD69 early activation antigen on T cells, being less effective on inducing changes in other T cell activation markers and in NK cells.


Sign in / Sign up

Export Citation Format

Share Document