scholarly journals F344, Rat Strain

2020 ◽  
Author(s):  
Keyword(s):  
F344 Rat ◽  
1976 ◽  
Vol 4 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Patricia E. Gay ◽  
Russell C. Leaf

1982 ◽  
Vol 92 (1) ◽  
pp. 37-42 ◽  
Author(s):  
H. M. A. MEIJS-ROELOFS ◽  
P. KRAMER ◽  
L. GRIBLING-HEGGE

A possible role of 5α-androstane-3α,17β-diol (3α-androstanediol) in the control of FSH secretion was studied at various ages in ovariectomized rats. In the rat strain used, vaginal opening, coincident with first ovulation, generally occurs between 37 and 42 days of age. If 3α-androstanediol alone was given as an ovarian substitute, an inhibitory effect on FSH release was evident with all three doses tested (50, 100, 300 μg/100 g body wt) between 13 and 30 days of age; at 33–35 days of age only the 300 μg dose caused some inhibition of FSH release. Results were more complex if 3α-androstanediol was given in combined treatment with oestradiol and progesterone. Given with progesterone, 3α-androstanediol showed a synergistic inhibitory action on FSH release between 20 and 30 days of age. However, when 3α-androstanediol was combined with oestradiol a clear decrease in effect, as compared to the effect of oestradiol alone, was found between 20 and 30 days of age. Also the effect of combined oestradiol and progesterone treatment was greater than the effect of combined treatment with oestradiol, progesterone and 3α-androstanediol. At all ages after day 20 none of the steroid combinations tested was capable of maintaining FSH levels in ovariectomized rats similar to those in intact rats. It is concluded that 3α-androstanediol might play a role in the control of FSH secretion in the immature rat, but after day 20 the potentially inhibitory action of 3α-androstanediol on FSH secretion is limited in the presence of oestradiol.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Kenichi Masumura ◽  
Tomoko Ando ◽  
Akiko Ukai ◽  
Sho Fujiwara ◽  
Shigeo Yokose ◽  
...  

Abstract Background Gene mutation assays in transgenic rodents are useful tools to investigate in vivo mutagenicity in a target tissue. Using a lambda EG10 transgene containing reporter genes, gpt delta transgenic mice and rats have been developed to detect point mutations and deletions. The transgene is integrated in the genome and can be rescued through an in vitro packaging reaction. However, the packaging efficiency is lower in gpt delta rats than in mice, because of the transgene in gpt delta rats being heterozygous and in low copy number. To improve the packaging efficiency, we herein describe a newly developed homozygous gpt delta rat strain. Results The new gpt delta rat has a Wistar Hannover background and has been successfully maintained as homozygous for the transgene. The packaging efficiency in the liver was 4 to 8 times higher than that of existing heterozygous F344 gpt delta rats. The frequency of gpt point mutations significantly increased in the liver and bone marrow of N-nitroso-N-ethylurea (ENU)- and benzo[a]pyrene (BaP)-treated rats. Spi− deletion frequencies significantly increased in the liver and bone marrow of BaP-treated rats but not in ENU-treated rats. Whole genome sequencing analysis identified ≥ 30 copies of lambda EG10 transgenes integrated in rat chromosome 1. Conclusions The new homozygous gpt delta rat strain showed a higher packaging efficiency, and could be useful for in vivo gene mutation assays in rats.


2002 ◽  
Vol 27 (5) ◽  
pp. 433-439 ◽  
Author(s):  
Hiroko YOSHINO ◽  
Toshio ICHIHARA ◽  
Mayumi KAWABE ◽  
Norio IMAI ◽  
Akihiro HAGIWARA ◽  
...  

1992 ◽  
Vol 7 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Kelly Dix ◽  
Leo T. Burka ◽  
Walter C. Dauterman

2014 ◽  
Vol 210 (4) ◽  
pp. 854-864 ◽  
Author(s):  
M. A. Høydal ◽  
T. O. Stølen ◽  
A. B. Johnsen ◽  
M. Alvez ◽  
D. Catalucci ◽  
...  

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Vikash Kumar ◽  
Chun Yang ◽  
Aron M Geurts ◽  
Mingyu Liang ◽  
Allen W Cowley

Pappa2 is a metalloproteinase which specifically cleaves IGFBP-3 and IGFBP-5 and in turn releases IGF-1. Recently, we have shown that a subcongenic Dahl salt-sensitive (SS) rat strain containing a 0.71 Mbp of chromosome 13 which includes Pappa2 gene from salt-insensitive Brown Norway (26-P strain) is protected significantly (24 mmHg) from salt-induced hypertension (Cowley et al., 2016). Although it is recognized that Pappa2 modulates development of bone size, cranial cartilage and angiogenesis, its role in kidney development and function is unknown. The present study determined the contribution of Pappa2 to nephron development by comparing SS and 26-P rat strains. It was found that Pappa2 mRNA expression was 5-fold higher in embryonic kidney (day 20.5) of the salt-resistant 26-P rats compared with age-matched SS rats. Pappa2 mRNA expression significantly increased with age of kidney reaching a maximum at postnatal day 5 in both strains. Pappa2 mRNA expression at postnatal day 15 was found to be 9-fold higher in the kidney of 26-P compared with SS strain. Immunohistochemistry studies revealed that Pappa2 co-localized with IGFBP-5 in the ureteric bud indicating that Pappa2 could be important for ureteric branching and nephron endowment. Glomerulus/mm 2 was therefore determined by counting total number of glomeruli in kidney sections from pups starting from P0 to P20. The salt-resistant 26-P congenic strain exhibited significantly greater nephron density 9.03 and 7.07 glo/mm 2 compared to 6.89 and 4.85 glo/mm 2 in SS rat at day P15 and P20, respectively. It appears that the Brown Norway pappa2 allele variant prevents the reduced nephron numbers observed in SS rats and thereby protects these congenic rats from salt-induced hypertension.


Sign in / Sign up

Export Citation Format

Share Document