Improving methods and facilities of Earth’s orientation parameters evaluation in Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluation

2020 ◽  
pp. 16-21
Author(s):  
Sergey L. Pasynok ◽  
Igor V. Bezmenov ◽  
Igor Yu. Ignatenko ◽  
Efim N. Tcyba ◽  
Vladimir E. Zharov

The results of improvement of methods and facilities of Earth’s orientation parameters in Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluatio in the last five years are considered. The hardware and software are modernized. As result Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluation has program correlator now, the calculation thechnic was improved, Analysis Center of Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluation was created. The Russian metrological institute of technical physics and radio engineering has satellite laser ranging station of new generation now. This station was created by Institute for precision instrument engineering. The new software for satellite laser ranging processing and lunar laser ranging processing was created. The new sofware of the global navigation satellite systems processing was developed. The software for very long base interferometry data processing and software for combination were modernized. Development of evaluation and predictioning facilities of Earth’s orientation parameters Russian metrological institute of technical physics and radio engineering was provided according to modern international direction. This allowed to provide work of evaluation and predictioning of Earth’s orientation parameters at the high international level.

2020 ◽  
pp. 39-44 ◽  
Author(s):  
S.L. Pasynok

The results of improvement of programs and methods of Earth’s orientation parameters (EOP) combination of vary long baseline interferometry (VLBI), global navigation satellite systems (GNSS) and satillite laser ranging (SLR) in Main Metrological Center of State Service for Time, Frequency and Earth’s orientation parameters evaluation are considered. Nowdays, the combination of different geodetic thecnics measurements in Main Metrological Center of State Service for time, frequency and Earth’s orientation parameters evaluation is provided both at the time raws level, and on the observations level. The increasing accuracy of Universal time UT1 was caused by using in combination observational data from new thirteen-meter antennas of the two-element very long base interferometer which was created in Institute of Applayed Astronomy of Russian Academy of Science. In general, increase in accuracy of combination values of the Earth’s orientation parameters was caused both by the increase in accuracy of the separate time raws, and by the improving of the combination algorithms.


2021 ◽  
Author(s):  
Vishwa Vijay Singh ◽  
Liliane Biskupek ◽  
Jürgen Müller ◽  
Mingyue Zhang

<p>The distance between the observatories on Earth and the retro-reflectors on the Moon has been regularly observed by the Lunar Laser Ranging (LLR) experiment since 1970. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the Moon, and a higher number of LLR observations in total. Providing the longest time series of any space geodetic technique for studying the Earth-Moon dynamics, LLR can also support the estimation of Earth orientation parameters (EOP), like UT1. The increased number of highly accurate LLR observations enables a more accurate estimation of the EOP. In this study, we add the effect of non-tidal station loading (NTSL) in the analysis of the LLR data, and determine post-fit residuals and EOP. The non-tidal loading datasets provided by the German Research Centre for Geosciences (GFZ), the International Mass Loading Service (IMLS), and the EOST loading service of University of Strasbourg in France are included as corrections to the coordinates of the LLR observatories, in addition to the standard corrections suggested by the International Earth Rotation and Reference Systems Service (IERS) 2010 conventions. The Earth surface deforms up to the centimetre level due to the effect of NTSL. By considering this effect in the Institute of Geodesy (IfE) LLR model (called ‘LUNAR’), we obtain a change in the uncertainties of the estimated station coordinates resulting in an up to 1% improvement, an improvement in the post-fit LLR residuals of up to 9%, and a decrease in the power of the annual signal in the LLR post-fit residuals of up to 57%. In a second part of the study, we investigate whether the modelling of NTSL leads to an improvement in the determination of EOP from LLR data. Recent results will be presented.</p>


Author(s):  
A.S. Akentyev ◽  
A.L. Sokolov

This paper examines retroreflector complexes of spacecraft and proposes a method of determining spatial orientation of a spacecraft based on satellite laser ranging data. The minimum number of retroreflector systems in a retroreflector complex required to determine spatial orientation of a spacecraft is calculated. The error of results of calculating the direction of axes of the spacecraft coordinate system is obtained in the inertial reference system of the quantum-optical station. Recommendations are given on the application of the proposed method of determining spatial orientation of a spacecraft with a retroreflector complex.


Author(s):  
C. Veillet ◽  
J. F. Mangin ◽  
J. E. Chabaubie ◽  
C. Dumolin ◽  
D. Feraudy ◽  
...  

2005 ◽  
Vol 14 (10) ◽  
pp. 1657-1666 ◽  
Author(s):  
GUANGYU LI ◽  
HAIBIN ZHAO

In the experimental tests of gravity, there have been considerable interests in the possibility of intermediate-range gravity. In this paper, we use the earth–satellite measurement of earth gravity, the lunar orbiter measurement of lunar gravity, and lunar laser ranging measurement to constrain the intermediate-range gravity from λ = 1.2 × 107 m –3.8 × 108 m . The limits for this range are α = 10-8–5 × 10-8, which improve previous limits by about one order of magnitude in the range λ = 1.2 × 107 m –3.8 × 108 m .


Sign in / Sign up

Export Citation Format

Share Document