technical physics
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 2131 (4) ◽  
pp. 042054
Author(s):  
Zh G Mogiljuk ◽  
V V Poduval’tsev

Abstract The article deals with the problem of forming dynamic thinking in the course of technical mechanics. This problem covers various forms and levels of professional training, including engineering courses in structural mechanics, postgraduate and doctoral studies. The study of this problem in the article is carried out using dynamic concepts in technical physics and metrology. The main method for analyzing this problem is the method and theory of vibroacoustic computational modeling developed by Prof. Hlystunov M.S. The article presents a comparative analysis of the reaction of a cantilever beam to static and dynamic load. The dynamic characteristics of such a beam, including its AFFC, AFC and FFC, resonances and antiresonances, are considered. Then we consider the reaction of the simplest two-rod frame to a dynamic load and its fundamental difference from the reaction to a static load. The article provides detailed mathematical calculations using the corresponding section of operational calculus. The terms, definitions, and mathematical representations used in the article correspond to similar classical concepts that are widely used in metrology, technical cybernetics, and technical physics. The article is provided with the necessary illustrations for a visual representation of the main dynamic characteristics and properties of building structures.


Author(s):  
М.М. Симунин

The article "Experiment to create a radio communication channel in the marine environment" (authors: A.K. Tomilin, A.F. Lukin, A.N. Gulkov), published in the journal "Technical Physics Letters" (2021, vol. 47, Issue 11), from the standpoint of classical physics. The organization of the experiment in the mentioned publication, its interpretation and theory underlying the work are criticized. The proposed material is a methodological commentary and is intended to form consistent approaches in the study and interpretation of further work on the creation of radio communication channels.


2020 ◽  
Vol 61 (7) ◽  
pp. 1277-1279
Author(s):  
K. A. Tikhomirova ◽  
Yu. L. Kuznetsova ◽  
O. I. Skul’skiy ◽  
A. V. Ryzhkov ◽  
Yu. L. Raikher ◽  
...  

2020 ◽  
pp. 16-21
Author(s):  
Sergey L. Pasynok ◽  
Igor V. Bezmenov ◽  
Igor Yu. Ignatenko ◽  
Efim N. Tcyba ◽  
Vladimir E. Zharov

The results of improvement of methods and facilities of Earth’s orientation parameters in Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluatio in the last five years are considered. The hardware and software are modernized. As result Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluation has program correlator now, the calculation thechnic was improved, Analysis Center of Main metrological center of State service for time, frequency and Earth’s orientation parameters evaluation was created. The Russian metrological institute of technical physics and radio engineering has satellite laser ranging station of new generation now. This station was created by Institute for precision instrument engineering. The new software for satellite laser ranging processing and lunar laser ranging processing was created. The new sofware of the global navigation satellite systems processing was developed. The software for very long base interferometry data processing and software for combination were modernized. Development of evaluation and predictioning facilities of Earth’s orientation parameters Russian metrological institute of technical physics and radio engineering was provided according to modern international direction. This allowed to provide work of evaluation and predictioning of Earth’s orientation parameters at the high international level.


Author(s):  
Georgy S. Bordonskiy ◽  
Aleksandr A. Gurulev ◽  
Sergey D. Krylov ◽  
Sergey V. Tsyrenzhapov

Представлены методики экспериментов для изучения переохлажденной воды с использованием микроволновой спектроскопии. Одна методика связана с получением глубокого переохлаждения воды в порах силикатного материала, другая основана на получении аморфного состояния в образце пресного льда при его пластической деформации. Показаны возможности методик при изучении свойств переохлажденной воды. При атмосферном давлении и температуре –45 °С (на линии Видома) был определен интервал температур, в котором наблюдаются аномалии микроволновых потерь переохлажденной воды, находящейся в порах силикагеля. При пластической деформации поликристаллического льда наблюдали минимум фактора потерь в микроволновом диапазоне на линии Видома.     ЛИТЕРАТУРА Chaplin M. Water Structure and Science. URL: http://www.lsbu.ac.uk/water/chaplin.html (accessed 18 January 2019). Mishima O. Journal of Chemical Physics, 2010, vol. 133, no. 14, p. 144503/6. https://doi.org/10.1063/1.3487999 Xu L., Kumar P., Buldyrev S. V., Chen S.-H., Poole P. H., Sciortino F., Stanley H. E. Proceedings of the National Academy of Sciences of the United States of America, 2005, vol. 102, iss. 46, p. 16558-16562. https://doi.org/10.1073/pnas.0507870102 Franzese G., Stanley Н. E. Journal of Physics Condensed Matter, 2007, vol. 19, p. 205126/1-16. https://doi.org/10.1088/0953-8984/19/20/205126 Sellberg J. A., Huang C., McQueen T. A., Loh N. D., Laksmono H., Schlesinger D., Sierra R. G., Nordlund D., Hampton C. Y., Starodub D., Deponte D. P., Beye M., Chen C., Martin A. V., Barty A., Wikfeldt K. T., Weiss T. M., Caronna C., Feldkamp J., Skinner L. B., Seibert M. M., Messerschmidt M., Williams G. J., Boutet S., Pettersson L. G. M., Bogan M. J., Nilsson A. Nature, 2014, vol. 510, no. 7505, pp. 381-384. https://doi.org/10.1038/nature13266  Bordonskiy G. S., Krylov S. D. Russian Journal of Physical Chemistry A, vol. 86, iss. 11, pp. 1682-1688. https://doi.org/10.1134/S0036024412110064 Bordonskiy G. S., Gurulev A. A., Krylov S. D., Sigachev N. P., Schegrina K. A. Condensed Matter and Interphases, 2016, vol. 18, no. 3, pp. 304-311. https://journals.vsu.ru/kcmf/article/view/138/96 (in Russ.) Castrillón S. R.-V., Giovambattista N., Aksay U. A., Debenedetti P. G. Journal of Physical Chemistry B, 2009, vol. 113, iss. 23, pp. 7973-7976. https://doi.org/10.1021/jp9025392 Cerveny S., Mallamace F., Swenson J., Vogel M., Xu L. Chemical Reviews, 2016, vol. 116, iss. 13, pp. 7608-7625. https://doi.org/10.1021/acs.chemrev.5b00609 Gallo P., Rovere M., Chen S.-H. Journal of Physical Chemistry Letters, 2010, vol. 1, iss. 4, pp. 729-733. https://doi.org/10.1021/jz9003125 Menshikov L. I., Menshikov P. L., Fedichev P. O. Journal of Experimental and Theoretical Physics, vol. 125, iss. 6, pp. 1173-1188. https://doi.org/10.1134/s1063776117120056 Bordonskii G. S., Gurulev A. A., Krylov S. D. Journal of Communications Technology and Electronics, 59, iss. 6, pp. 536-540. https://doi.org/10.1134/s1064226914060060 Bordonskii G. S., Krylov S. D. Technical Physics Letters, vol. 43, iss. 11, pp. 983-986. https://doi.org/10.1134/s1063785017110025 Silonov V. M., Chubarov V. V. Journal of Surface Investigation, 2016, vol. 10, iss. 4, pp. 883-886. DOI: 10.1134/S1027451016030356 Bordonskii G. S., Gurulev A. A. Technical Physics Letters, vol. 43, iss. 4, pp. 380-382. https://doi.org/10.1134/s1063785017040174 Landau L. D., Lifshic E. M. Teoreticheskaya fizika. Tom. 5. Statisticheskaya fizika. CHast' 1. M.: Fizmatlit Publ., 2002, 616 p. (in Russ.). Orlov A. O. Vestnik Zabajkal'skogo gosudarstvennogo universiteta, 2016, vol. 22, no. 8, pp. 14-20. (in Russ.) Nagoe A., Kanke Y., Oguni M., Namba S. Journal of Physical Chemistry B, 2010, vol. 114, iss. 44, pp. 13940-13943. https://doi.org/10.1021/jp104970s Zuev L. B. Fiz. Met., 2015, vol. 16, no. 1, pp. 35–60. (in Russ.).


2010 ◽  
Vol 48 (8) ◽  
pp. 543-545 ◽  
Author(s):  
Y. J. Glanville
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document