Identification and characterization of Bacillus anthracis spore-associated proteins

2012 ◽  
Author(s):  
Krista A. Spreng
2004 ◽  
Vol 15 (5) ◽  
pp. 2287-2301 ◽  
Author(s):  
Srinivas Venkatram ◽  
Joseph J. Tasto ◽  
Anna Feoktistova ◽  
Jennifer L. Jennings ◽  
Andrew J. Link ◽  
...  

The γ-tubulin complex, via its ability to organize microtubules, is critical for accurate chromosome segregation and cytokinesis in the fission yeast, Schizosaccharomyces pombe. To better understand its roles, we have purified the S. pombe γ-tubulin complex. Mass spectrometric analyses of the purified complex revealed known components and identified two novel proteins (i.e., Mbo1p and Gfh1p) with homology to γ-tubulin–associated proteins from other organisms. We show that both Mbo1p and Gfh1p localize to microtubule organizing centers. Although cells deleted for either mbo1+ or gfh1+ are viable, they exhibit a number of defects associated with altered microtubule function such as defects in cell polarity, nuclear positioning, spindle orientation, and cleavage site specification. In addition, mbo1Δ and gfh1Δ cells exhibit defects in astral microtubule formation and anchoring, suggesting that these proteins have specific roles in astral microtubule function. This study expands the known roles of γ-tubulin complex components in organizing different types of microtubule structures in S. pombe.


2004 ◽  
Vol 20 (4) ◽  
pp. 807-813 ◽  
Author(s):  
Shi-Hua Wang ◽  
Ji-Kai Wen ◽  
Ya-Feng Zhou ◽  
Zhi-Ping Zhang ◽  
Rui-Fu Yang ◽  
...  

2010 ◽  
Vol 313 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Cari A. Beesley ◽  
Cynthia L. Vanner ◽  
Leta O. Helsel ◽  
Jay E. Gee ◽  
Alex R. Hoffmaster

2003 ◽  
Vol 185 (4) ◽  
pp. 1462-1464 ◽  
Author(s):  
Matthew A. Weiner ◽  
Timothy D. Read ◽  
Philip C. Hanna

ABSTRACT We identified a tri-cistronic operon, gerH, in Bacillus anthracis that is important for endospore germination triggered by two distinct germination response pathways termed inosine-His and purine-Ala. Together, the two pathways allow B. anthracis endospores a broader recognition of purines and amino acids that may be important for host-mediated germination.


1999 ◽  
Vol 33 (2) ◽  
pp. 407-414 ◽  
Author(s):  
Chantal Guidi-Rontani ◽  
Yannick Pereira ◽  
Stephanie Ruffie ◽  
Jean-Claude Sirard ◽  
Martine Weber-Levy ◽  
...  

2016 ◽  
Vol 29 (5) ◽  
pp. 362-373 ◽  
Author(s):  
Marko Flajsman ◽  
Stanislav Mandelc ◽  
Sebastjan Radisek ◽  
Natasa Stajner ◽  
Jernej Jakse ◽  
...  

Plant pathogens employ various secreted proteins to suppress host immunity for their successful host colonization. Identification and characterization of pathogen-secreted proteins can contribute to an understanding of the pathogenicity mechanism and help in disease control. We used proteomics to search for proteins secreted to xylem by the vascular pathogen Verticillium nonalfalfae during colonization of hop plants. Three highly abundant fungal proteins were identified: two enzymes, α-N-arabinofuranosidase (VnaAbf4.216) and peroxidase (VnaPRX1.1277), and one small secreted hypothetical protein (VnaSSP4.2). These are the first secreted proteins so far identified in xylem sap following infection with Verticillium spp. VnaPRX1.1277, classified as a heme-containing peroxidase from Class II, similar to other Verticillium spp. lignin-degrading peroxidases, and VnaSSP4.2, a 14-kDa cysteine-containing protein with unknown function and with a close homolog in related V. alfalfae strains, were further examined. The in planta expression of VnaPRX1.1277 and VnaSSP4.2 genes increased with the progression of colonization, implicating their role in fungal virulence. Indeed, V. nonalfalfae deletion mutants of both genes exhibited attenuated virulence on hop plants, which returned to the level of the wild-type pathogenicity in the knockout complementation lines, supporting VnaPRX1.1277 and VnaSSP4.2 as virulence factors required to promote V. nonalfalfae colonization of hop plants.


2016 ◽  
Vol 84 (5) ◽  
pp. 1574-1584 ◽  
Author(s):  
Rosalynn L. Ord ◽  
Marilis Rodriguez ◽  
Jeny R. Cursino-Santos ◽  
Hyunryung Hong ◽  
Manpreet Singh ◽  
...  

Apicomplexan parasites include those of the generaPlasmodium,Cryptosporidium, andToxoplasmaand those of the relatively understudied zoonotic genusBabesia. In humans, babesiosis, particularly transfusion-transmitted babesiosis, has been emerging as a major threat to public health. Like malaria, the disease pathology is a consequence of the parasitemia which develops through cyclical replication ofBabesiaparasites in host erythrocytes. However, there are no exoerythrocytic stages inBabesia, so targeting of the blood stage and associated proteins to directly prevent parasite invasion is the most desirable option for effective disease control. Especially promising among such molecules are the rhoptry neck proteins (RONs), whose homologs have been identified in many apicomplexan parasites. RONs are involved in the formation of the moving junction, along with AMA1, but no RON has been identified and characterized in anyBabesiaspp. Here we identify the RON2 proteins ofBabesia divergens(BdRON2) andB. microti(BmRON2) and show that they are localized apically and that anti-BdRON2 antibodies are significant inhibitors of parasite invasionin vitro. Neither protein is immunodominant, as both proteins react only marginally with sera from infected animals. Further characterization of the direct role of both BdRON2 and BmRON2 in parasite invasion is required, but knowledge of the level of conformity of RON2 proteins within the apicomplexan phylum, particularly that of the AMA1-RON2 complex at the moving junction, along with the availability of an animal model forB. microtistudies, provides a key to target this complex with a goal of preventing the erythrocytic invasion of these parasites and to further our understanding of the role of these conserved ligands in invasion.


2010 ◽  
Vol 38 (4) ◽  
pp. 1110-1115 ◽  
Author(s):  
Rebecca Hogg ◽  
Joanne C. McGrail ◽  
Raymond T. O'Keefe

The NineTeen Complex (NTC) of proteins associates with the spliceosome during pre-mRNA splicing and is essential for both steps of intron removal. The NTC and other NTC-associated proteins are recruited to the spliceosome where they participate in regulating the formation and progression of essential spliceosome conformations required for the two steps of splicing. It is now clear that the NTC is an integral component of active spliceosomes from yeast to humans and provides essential support for the spliceosomal snRNPs (small nuclear ribonucleoproteins). In the present article, we discuss the identification and characterization of the yeast NTC and review recent work in yeast that supports the essential role for this complex in the regulation and fidelity of splicing.


Sign in / Sign up

Export Citation Format

Share Document