Physics-based predictions of RNA loop stability and structures

2012 ◽  
Author(s):  
◽  
Liang Liu

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] RNA (ribonucleic acid) molecules play a variety of crucial roles in cellular functions at the level of transcription, translation and gene regulation. RNA functions are tied to structures. In parallel to the experimental determination of RNA structures, such as X-ray crystallography and NMR spectroscopy, which can be laborious, time-consuming and expensive, it is imperative to develop a reliable theoretical/computational model for RNA structure prediction from its sequence. We aim to develop a novel free energy-based model for RNA structures, especially for RNA loops and junctions. One of the major roadblocks for the physics-based RNA tertiary structure prediction is the evaluation of the entropy for RNA tertiary folds. In particular, the entropies of structures with multiple loops and helices can be highly convoluted due to the volume exclusion between the loops and helices. In the first project, we develop a new conformational entropy model for RNA structures consisting of multiple helices connected by cross-linked loops. The basic strategy of our approach is to decompose the whole structure into a number of three-body building blocks, where each building block consists of a loop and two helices that are directly connected to the two ends of the loop. The simple construct of the three-body system allows for accurate computation of the conformational entropy for each building block. Assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of a large class of RNA tertiary folds. Tests against exact computer enumeration indicate that the method can yield accurate results for the entropy. The method provide a solid first step toward a systematic development of an entropy and free energy model for complex tertiary folds for RNA and other biopolymer. In the second project, we developed a novel approach to the prediction of loop structures from the sequence. The current loop free energy parameters (such as the Turner rules) depend only on the loop length and ignore the loop sequence-dependence. Such an oversimplification can lead to significant inaccuracies in the prediction of loop structure and stability. Here we tackle the problem by extracting the sequence-dependent scoring functions from the known loop structures. Specifically, based on the survey of all the known RNA structures, we derive a set of virtual bond-based scoring functions for the different types of dinucleotides. To circumvent the problem of reference state selection, we apply an iterative method to extract the effective potential, based on the complete conformational ensemble. This new new method has two notable advantages: (1) the statistical potential is extracted from the complete conformational ensemble, including the nonnative structures, (2) the method predicts low-energy loop structures from the sequence without additional information such as the homologous structural template. With such a set of knowledge-based energy parameters, for a given sequence, we can successfully identify the native structure (the best-scored structure) from a set of structural decoys. Our extensive benchmark tests show consistently encouraging success rates in the coarse-grained loop structure predictions.

2012 ◽  
Author(s):  
◽  
Liang Liu

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] RNA (ribonucleic acid) molecules play a variety of crucial roles in cellular functions at the level of transcription, translation and gene regulation. RNA functions are tied to structures. We aim to develop a novel free energy-based model for RNA structures, especially for RNA loops and junctions. In the first project, we develop a new conformational entropy model for RNA structures consisting of multiple helices connected by cross-linked loops. The basic strategy of our approach is to decompose the whole structure into a number of three-body building blocks, where each building block consists of a loop and two helices that are directly connected to the two ends of the loop. Assembly of the building blocks gives the entropy of the whole structure. The method provide a solid first step toward a systematic development of an entropy and free energy model for complex tertiary folds for RNA and other biopolymer. In the second project, based on the survey of all the known RNA structures, we derive a set of virtual bond-based scoring functions for the different types of dinucleotides. To circumvent the problem of reference state selection, we apply an iterative method to extract the effective potential, based on the complete conformational ensemble. With such a set of knowledge-based energy parameters, for a given sequence, we can successfully identify the native structure (the best-scored structure) from a set of structural decoys.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450022 ◽  
Author(s):  
Hamed Tabatabaei Ghomi ◽  
Jared J. Thompson ◽  
Markus A. Lill

Distance-based statistical potentials have long been used to model condensed matter systems, e.g. as scoring functions in differentiating native-like protein structures from decoys. These scoring functions are based on the assumption that the total free energy of the protein can be calculated as the sum of pairwise free energy contributions derived from a statistical analysis of pair-distribution functions. However, this fundamental assumption has been challenged theoretically. In fact the free energy of a system with N particles is only exactly related to the N-body distribution function. Based on this argument coarse-grained multi-body statistical potentials have been developed to capture higher-order interactions. Having a coarse representation of the protein and using geometric contacts instead of pairwise interaction distances renders these models insufficient in modeling details of multi-body effects. In this study, we investigated if extending distance-dependent pairwise atomistic statistical potentials to corresponding interaction functions that are conditional on a third interacting body, defined as quasi-three-body statistical potentials, could model details of three-body interactions. We also tested if this approach could improve the predictive capabilities of statistical scoring functions for protein structure prediction. We analyzed the statistical dependency between two simultaneous pairwise interactions and showed that there is surprisingly little if any dependency of a third interacting site on pairwise atomistic statistical potentials. Also the protein structure prediction performance of these quasi-three-body potentials is comparable with their corresponding two-body counterparts. The scoring functions developed in this study showed better or comparable performances compared to some widely used scoring functions for protein structure prediction.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Nicola Calonaci ◽  
Alisha Jones ◽  
Francesca Cuturello ◽  
Michael Sattler ◽  
Giovanni Bussi

Abstract RNA function crucially depends on its structure. Thermodynamic models currently used for secondary structure prediction rely on computing the partition function of folding ensembles, and can thus estimate minimum free-energy structures and ensemble populations. These models sometimes fail in identifying native structures unless complemented by auxiliary experimental data. Here, we build a set of models that combine thermodynamic parameters, chemical probing data (DMS and SHAPE) and co-evolutionary data (direct coupling analysis) through a network that outputs perturbations to the ensemble free energy. Perturbations are trained to increase the ensemble populations of a representative set of known native RNA structures. In the chemical probing nodes of the network, a convolutional window combines neighboring reactivities, enlightening their structural information content and the contribution of local conformational ensembles. Regularization is used to limit overfitting and improve transferability. The most transferable model is selected through a cross-validation strategy that estimates the performance of models on systems on which they are not trained. With the selected model we obtain increased ensemble populations for native structures and more accurate predictions in an independent validation set. The flexibility of the approach allows the model to be easily retrained and adapted to incorporate arbitrary experimental information.


Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2019 ◽  
Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Sign in / Sign up

Export Citation Format

Share Document