The expression and correlations of repressors, intermediaries, and end-products of the IGF1 and insulin signaling pathways within the hepatic and reproductive tissues of holstein cattle h [electronic resource]

2008 ◽  
Author(s):  
Joseph Patrick Meyer
Diabetes ◽  
1998 ◽  
Vol 47 (2) ◽  
pp. 179-185 ◽  
Author(s):  
R. W. Stevenson ◽  
D. K. Kreutter ◽  
K. M. Andrews ◽  
P. E. Genereux ◽  
E. M. Gibbs

1998 ◽  
Vol 273 (39) ◽  
pp. 25347-25355 ◽  
Author(s):  
Takanobu Imanaka ◽  
Hideki Hayashi ◽  
Kazuhiro Kishi ◽  
Lihong Wang ◽  
Kazuo Ishii ◽  
...  

2020 ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Hua Cao

Abstract Background: Heart failure is one of leading cause of death worldwide. However, the transcriptional profiling of heart failure is unclear. Moreover, the signaling pathways and transcription factors involving the heart failure development also are largely unknown. Using published Gene Expression Omnibus (GEO) datasets, in the present study, we aim to comprehensively analyze the differentially expressed genes in failing heart tissues, and identified the critical signaling pathways and transcription factors involving heart failure development. Methods: The transcriptional profiling of heart failure was identified from previously published gene expression datasets deposited in GSE5406, GSE16499 and GSE68316. The enriched signaling pathways and transcription factors were analyzed using DAVID website and gene set enrichment analysis (GSEA) assay. The transcriptional networks were created by Cytoscape. Results: Compared with the normal heart tissues, 90 genes were particularly differentially expressed in failing heart tissues, and those genes were associated with multiple metabolism signaling pathways and insulin signaling pathway. Metabolism and insulin signaling pathway were both inactivated in failing heart tissues. Transcription factors MYC and C/EBPβ were both negatively associated with the expression profiling of failing heart tissues in GSEA assay. Moreover, compared with normal heart tissues, MYC and C/EBPβ were down regulated in failing heart tissues. Furthermore, MYC and C/EBPβ mediated downstream target genes were also decreased in failing heart tissues. MYC and C/EBPβ were positively correlated with each other. At last, we constructed MYC and C/EBPβ mediated regulatory networks in failing heart tissues, and identified the MYC and C/EBPβ target genes which had been reported involving the heart failure developmental progress. Conclusions: Our results suggested that metabolism pathways and insulin signaling pathway, transcription factors MYC and C/EBPβ played critical roles in heart failure developmental progress.


2019 ◽  
Vol 317 (5) ◽  
pp. H1166-H1172 ◽  
Author(s):  
T. Dylan Olver ◽  
Zachary I. Grunewald ◽  
Thaysa Ghiarone ◽  
Robert M. Restaino ◽  
Allan R. K. Sales ◽  
...  

Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity. NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Jung Heo ◽  
Sung-E Choi ◽  
Ja Young Jeon ◽  
Seung Jin Han ◽  
Dae Jung Kim ◽  
...  

Background. It has been suggested that visfatin, which is an adipocytokine, exhibits proinflammatory properties and is associated with insulin resistance. Insulin resistance and inflammation are the principal pathogeneses of nonalcoholic fatty liver disease (NAFLD), but the relationship, if any, between visfatin and NAFLD remains unclear. Here, we evaluated the effects of visfatin on hepatic inflammation and insulin resistance in HepG2 cells and examined the molecular mechanisms involved. Methods. After treatment with visfatin, the inflammatory cytokines IL-6, TNF-α, and IL-1β were assessed by real-time polymerase chain reaction (RT-PCR) and immunocytochemical staining in HepG2 cells. To investigate the effects of visfatin on insulin resistance, we evaluated insulin-signaling pathways, such as IR, IRS-1, GSK, and AKT using immunoblotting. We assessed the intracellular signaling molecules including STAT3, NF-κB, IKK, p38, JNK, and ERK by western blotting. We treated HepG2 cells with both visfatin and either AG490 (a JAK2 inhibitor) or Bay 7082 (an NF-κB inhibitor); we examined proinflammatory cytokine mRNA levels using RT-PCR and insulin signaling using western blotting. Results. In HepG2 cells, visfatin significantly increased the levels of proinflammatory cytokines, reduced the levels of proteins (e.g., phospho-IR, phospho-IRS-1 (Tyr612), phospho-AKT, and phospho-GSK-3α/β) involved in insulin signaling, and increased IRS-1 S307 phosphorylation compared to controls. Interestingly, visfatin increased the activities of the JAK2/STAT3 and IKK/NF-κB signaling pathways but not those of the JNK, p38, and ERK pathways. Visfatin-induced inflammation and insulin resistance were regulated by JAK2/STAT3 and IKK/NF-κB signaling; together with AG490 or Bay 7082, visfatin significantly reduced mRNA levels of IL-6, TNF-α and IL-1β and rescued insulin signaling. Conclusion. Visfatin induced proinflammatory cytokine production and inhibited insulin signaling via the STAT3 and NF-κB pathways in HepG2 cells.


2016 ◽  
Vol 48 (5) ◽  
pp. 485-486
Author(s):  
Xiuping Li ◽  
Shichang Cai ◽  
Weidong Yin ◽  
Xiaobo Hu ◽  
Sujun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document