scholarly journals Preparation of silica/carbon composite from rice husk and its electrochemical pro ertives as anode material in Li-ion batteries

2020 ◽  
Vol 4 (4) ◽  
pp. 767-775
Author(s):  
Vu Tan Phat ◽  
Ngoc Thi Bao Nguyen ◽  
Phung Gia Thinh ◽  
Tuyen Thi Kim Huynh ◽  
Man Van Tran ◽  
...  

Rice husk is a common agricultural waste and an abundant source in Viet Nam. In terms of composition, rice husk is a silica-rich material (SiO2) so it can be used to prepare negative electrode materials for rechargeable Li-ion batteries. Recent processes of synthesizing the silica materials for the rechargeable batteries are often complex, expensive, and energy-intensive. In this study, KOH was used to treat rice husk ash to obtain SiO2/C porous composite materials. X-ray diffraction results (XRD) showed that the diffraction peak between 22o and 23o (2q ) was characterized of SiO2 material, and the other peaks around 43-44o was featured of carbon material. Scanning electron microscope image (SEM) showed the porous structure with the pore size 3-5 mm.Besides, the amorphous structure with coverage layers was also confirmed through the Transmission Electron Microscope (TEM) images. Preliminary electrochemical results demonstratedthat Li-ion coin cell using the SiO2/C anode material exhibited a high capacity of 1200 mAh/g at a discharge current of 1.0 A/g and maintained 1000 mAh/g after 100 cycles. SiO2/C materials prepared from rice husks were highly promising for battery application thanks to their low cost, stable performance, environmental friendliness, and easy expansion for production scale.

2013 ◽  
Vol 688 ◽  
pp. 86-92 ◽  
Author(s):  
Guan-nan Zhu ◽  
Yuan-jin Du ◽  
Yong-gang Wang ◽  
Ai-shui Yu ◽  
Yong-yao Xia

RSC Advances ◽  
2017 ◽  
Vol 7 (48) ◽  
pp. 30032-30037 ◽  
Author(s):  
Hui Zhang ◽  
Hui Xu ◽  
Hong Jin ◽  
Chao Li ◽  
Yu Bai ◽  
...  

A novel 3-dimensional (3D) flower-like silicon/carbon composite was synthesized through spray drying method by using NaCl as the sacrificial reagent and was evaluated as an anode material for lithium ion batteries.


2011 ◽  
Vol 1313 ◽  
Author(s):  
Indranil Lahiri ◽  
Sung-Woo Oh ◽  
Yang-Kook Sun ◽  
Wonbong Choi

ABSTRACTRechargeable batteries are in high demand for future hybrid vehicles and electronic devices markets. Among various kinds of rechargeable batteries, Li-ion batteries are most popular for their obvious advantages of high energy and power density, ability to offer higher operating voltage, absence of memory effect, operation over a wider temperature range and showing a low self-discharge rate. Researchers have shown great deal of interest in developing new, improved electrode materials for Li-ion batteries leading to higher specific capacity, longer cycle life and extra safety. In the present study, we have shown that an anode prepared from interface-controlled multiwall carbon nanotubes (MWCNT), directly grown on copper current collectors, may be the best suitable anode for a Li-ion battery. The newly developed anode structure has shown very high specific capacity (almost 2.5 times as that of graphite), excellent rate capability, nil capacity degradation in long-cycle operation and introduced a higher level of safety by avoiding organic binders. Enhanced properties of the anode were well supported by the structural characterization and can be related to very high Li-ion intercalation on the walls of CNTs, as observed in HRTEM. This newly developed CNT-based anode structure is expected to offer appreciable advancement in performance of future Li-ion batteries.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xin Shen ◽  
Xue-Qiang Zhang ◽  
Fei Ding ◽  
Jia-Qi Huang ◽  
Rui Xu ◽  
...  

Lithium- (Li-) ion batteries have revolutionized our daily life towards wireless and clean style, and the demand for batteries with higher energy density and better safety is highly required. The next-generation batteries with innovatory chemistry, material, and engineering breakthroughs are in strong pursuit currently. Herein, the key historical developments of practical electrode materials in Li-ion batteries are summarized as the cornerstone for the innovation of next-generation batteries. In addition, the emerging electrode materials for next-generation batteries are discussed as the revolving challenges and potential strategies. Finally, the future scenario of high-energy-density rechargeable batteries is presented. The combination of theory and experiment under multiscale is highlighted to promote the development of emerging electrode materials.


2021 ◽  
Vol 03 (01) ◽  
pp. 067-089
Author(s):  
Eric R. Wolfson ◽  
Erica M. Moscarello ◽  
William K. Haug ◽  
Psaras L. McGrier

Covalent organic frameworks (COFs) are an advanced class of crystalline porous polymers that have garnered significant interest due to their tunable properties and robust molecular architectures. As a result, COFs with energy-storage properties are of particular interest to the field of rechargeable battery electrode materials. However, investigation into COFs as candidates for energy-storage materials is still in its infancy. This review will highlight methods used to fabricate COFs used as electrode materials and discuss the factors that prove critical for their production. A collection of known COF-based energy-storage systems will be featured. In addition, the ability to utilize the storage properties of COFs for systems beyond traditional Li-ion batteries will be addressed. An outlook will address the current progress and remaining challenges facing the field to ultimately expand the scope of their applications.


2015 ◽  
Vol 3 (4) ◽  
pp. 1476-1482 ◽  
Author(s):  
Mingqi Li ◽  
Yan Yu ◽  
Jing Li ◽  
Baoling Chen ◽  
Xianwen Wu ◽  
...  

Because of its high capacity, relatively low operation potentials, abundance and environmental benevolence, silica is a promising anode material for high-energy lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document