scholarly journals Use of Implantable Cardioverter-Defibrillators in Congenital Heart Disease and Pediatric Patients: Results from the German National Registry for Congenital Heart Defects

2020 ◽  
Vol 15 (2) ◽  
pp. 117-125
Author(s):  
Coralie Katharina Dicks ◽  
Gerhard-Paul Diller ◽  
Kristina Wasmer ◽  
Paul C ◽  
Helm ◽  
...  
2021 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Olga María Diz ◽  
Rocio Toro ◽  
Sergi Cesar ◽  
Olga Gomez ◽  
Georgia Sarquella-Brugada ◽  
...  

Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoxian Deng ◽  
Shanshan Li ◽  
Qiu Qiu ◽  
Bowen Jin ◽  
Menghuan Yan ◽  
...  

Abstract Background Pediatric patients with genetic disorders have a higher incidence of pulmonary arterial hypertension (PAH) regardless of their heart defects. Filamin A (FLNA) mutation is recently recognized to be associated with pediatric pulmonary disorders, however, the clinical courses of PAH related to the mutation were reported in limited cases. Here, we presented a case and pooled data for better understanding of the correlation between FLNA mutation and pediatric PAH. Case presentation The patient was a 8-month-old female with repeated episodes of pneumonia. Physical examination revealed cleft lip, cleft palate and developmental retardation. Imaging examination showed a small atrial septal defect (ASD), central pulmonary artery enlargement, left upper lobe of lung atelectasis, and pulmonary infiltration. Genetic test showed she carried a de novo pathogenic variant of FLNA gene (c.5417-1G > A, p.-). Oral medications didn’t slow the progression of PAH in the patient, and she died two years later. Conclusions FLNA mutation causes rare but progressive PAH in addition to a wide spectrum of congenital heart disease and other comorbidities in pediatric patients. We highly recommend genetic testing for pediatric patients when suspected with PAH. Given the high mortality in this group, lung transplantation may offer a better outcome.


Sign in / Sign up

Export Citation Format

Share Document