scholarly journals Predicting Plaque Progression Using Patient-Specific Fluid-Structure-Interaction Models Based on IVUS and OCT Images with Follow-Up

2019 ◽  
Vol 16 (s1) ◽  
pp. 75-76
Author(s):  
Xiaoya Guo ◽  
Dalin Tang ◽  
David Molony ◽  
Chun Yang ◽  
Habib Samady ◽  
...  
Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 412
Author(s):  
Elaine Tang ◽  
Zhenglun (Alan) Wei ◽  
Mark A. Fogel ◽  
Alessandro Veneziani ◽  
Ajit P. Yoganathan

Total cavopulmonary connection (TCPC) hemodynamics has been hypothesized to be associated with long-term complications in single ventricle heart defect patients. Rigid wall assumption has been commonly used when evaluating TCPC hemodynamics using computational fluid dynamics (CFD) simulation. Previous study has evaluated impact of wall compliance on extra-cardiac TCPC hemodynamics using fluid-structure interaction (FSI) simulation. However, the impact of ignoring wall compliance on the presumably more compliant intra-atrial TCPC hemodynamics is not fully understood. To narrow this knowledge gap, this study aims to investigate impact of wall compliance on an intra-atrial TCPC hemodynamics. A patient-specific model of an intra-atrial TCPC is simulated with an FSI model. Patient-specific 3D TCPC anatomies were reconstructed from transverse cardiovascular magnetic resonance images. Patient-specific vessel flow rate from phase-contrast magnetic resonance imaging (MRI) at the Fontan pathway and the superior vena cava under resting condition were prescribed at the inlets. From the FSI simulation, the degree of wall deformation was compared with in vivo wall deformation from phase-contrast MRI data as validation of the FSI model. Then, TCPC flow structure, power loss and hepatic flow distribution (HFD) were compared between rigid wall and FSI simulation. There were differences in instantaneous pressure drop, power loss and HFD between rigid wall and FSI simulations, but no difference in the time-averaged quantities. The findings of this study support the use of a rigid wall assumption on evaluation of time-averaged intra-atrial TCPC hemodynamic metric under resting breath-held condition.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 119 ◽  
Author(s):  
Anvar Gilmanov ◽  
Alexander Barker ◽  
Henryk Stolarski ◽  
Fotis Sotiropoulos

When flow-induced forces are altered at the blood vessel, maladaptive remodeling can occur. One reason such remodeling may occur has to do with the abnormal functioning of the aortic heart valve due to disease, calcification, injury, or an improperly-designed prosthetic valve, which restricts the opening of the valve leaflets and drastically alters the hemodynamics in the ascending aorta. While the specifics underlying the fundamental mechanisms leading to changes in heart valve function may differ from one cause to another, one common and important change is in leaflet stiffness and/or mass. Here, we examine the link between valve stiffness and mass and the hemodynamic environment in aorta by coupling magnetic resonance imaging (MRI) with high-resolution fluid–structure interaction (FSI) computational fluid dynamics to simulate blood flow in a patient-specific model. The thoracic aorta and a native aortic valve were re-constructed in the FSI model from the MRI data and used for the simulations. The effect of valve stiffness and mass is parametrically investigated by varying the thickness (h) of the leaflets (h = 0.6, 2, 4 mm). The FSI simulations were designed to investigate systematically progressively higher levels of valve stiffness by increasing valve thickness and quantifying hemodynamic parameters known to be linked to aortopathy and valve disease. The computed results reveal dramatic differences in all hemodynamic parameters: (1) the geometric orifice area (GOA), (2) the maximum velocity V max of the jet passing through the aortic orifice area, (3) the rate of energy dissipation E ˙ diss ( t ) , (4) the total loss of energy E diss , (5) the kinetic energy of the blood flow E kin ( t ) , and (6) the average magnitude of vorticity Ω a ( t ) , illustrating the change in hemodynamics that occur due to the presence of aortic valve stenosis.


Sign in / Sign up

Export Citation Format

Share Document