scholarly journals Generic Disease Prediction using Symptoms with Supervised Machine Learning

Author(s):  
Ashish Kailash Pal ◽  
Pritam Rawal ◽  
Rahil Ruwala ◽  
Vaibhavi Patel

Data Mining and Machine Learning plays most inspiring area of research that become most popular in health organization. It also plays a vital part to uncover new patterns in medicinal science and services association which thusly accommodating for all the parties associated with this field. This project intend to form a diagnostic model of the common diseases based on the symptoms by using data mining technique such as classification in health domain. In this project, we are going to use algorithms like Random forest, Naive Bayes which can be utilized for health care diagnosis. Performances of the classifiers are compared to each other to find out highest accuracy. This also helps us to find out persons who are affected by the infection. The test based on the outcomes of the diseases.

2015 ◽  
Vol 21 (2) ◽  
pp. 95
Author(s):  
Hyo Soung Cha ◽  
Tae Sik Yoon ◽  
Ki Chung Ryu ◽  
Il Won Shin ◽  
Yang Hyo Choe ◽  
...  

2016 ◽  
Vol 139 (6) ◽  
pp. 46-47
Author(s):  
M. Ashrafa ◽  
D. Asha ◽  
D. Radha ◽  
M. Sangeetha ◽  
R. Jayaparvathy

Author(s):  
Mr. Bhushan Bandre, Ms. Rashmi Khalatkar

Major decision making process using large amount of data can be done by various techniques using data mining. In education sectors various data mining techniques are implemented to analyze the student’s data from the admission process itself. Due to large number of educational institution in India, excellence becomes a major parameter for the institutions to grow and with stand. Nowadays education institutions use data mining techniques to show their excellence. The main objective of this work to present an analysis of individual semester wise results of engineering college students using different techniques of data mining. Here we used different classification algorithms like decision tree, rule based, function based and Bayesian algorithms to analyze the semester results and comparison is made by considering parameters like accuracy and error rate. Our output shows the most suited algorithm for analyzing data in educational institutions.


Sign in / Sign up

Export Citation Format

Share Document