Big Data Analytics in Intra-Data Center Networks and Components of Data Mining

Author(s):  
Pushpa Mannava

Data mining is considered as a vital procedure as it is used for locating brand-new, legitimate, useful as well as reasonable kinds of data. The assimilation of data mining methods in cloud computing gives a versatile and also scalable design that can be made use of for reliable mining of significant quantity of data from virtually incorporated data resources with the goal of creating beneficial information which is useful in decision making. The procedure of removing concealed, beneficial patterns, as well as useful info from big data is called big data analytics. This is done via using advanced analytics techniques on large data collections. This paper provides the information about big data analytics in intra-data center networks, components of data mining and also techniques of Data mining.

2019 ◽  
Vol 4 (1) ◽  
pp. 14-25
Author(s):  
Saiful Rizal

The development of information technology produces very large data sizes, with various variations in data and complex data structures. Traditional data storage techniques are not sufficient for storage and analysis with very large volumes of data. Many researchers conducted their research in analyzing big data with various analytics models in big data. Therefore, the purpose of the survey paper is to provide an understanding of analytics models in big data for various uses using algorithms in data mining. Preprocessing big data is the key to turning big data into big value.


2019 ◽  
Author(s):  
Meghana Bastwadkar ◽  
Carolyn McGregor ◽  
S Balaji

BACKGROUND This paper presents a systematic literature review of existing remote health monitoring systems with special reference to neonatal intensive care (NICU). Articles on NICU clinical decision support systems (CDSSs) which used cloud computing and big data analytics were surveyed. OBJECTIVE The aim of this study is to review technologies used to provide NICU CDSS. The literature review highlights the gaps within frameworks providing HAaaS paradigm for big data analytics METHODS Literature searches were performed in Google Scholar, IEEE Digital Library, JMIR Medical Informatics, JMIR Human Factors and JMIR mHealth and only English articles published on and after 2015 were included. The overall search strategy was to retrieve articles that included terms that were related to “health analytics” and “as a service” or “internet of things” / ”IoT” and “neonatal intensive care unit” / ”NICU”. Title and abstracts were reviewed to assess relevance. RESULTS In total, 17 full papers met all criteria and were selected for full review. Results showed that in most cases bedside medical devices like pulse oximeters have been used as the sensor device. Results revealed a great diversity in data acquisition techniques used however in most cases the same physiological data (heart rate, respiratory rate, blood pressure, blood oxygen saturation) was acquired. Results obtained have shown that in most cases data analytics involved data mining classification techniques, fuzzy logic-NICU decision support systems (DSS) etc where as big data analytics involving Artemis cloud data analysis have used CRISP-TDM and STDM temporal data mining technique to support clinical research studies. In most scenarios both real-time and retrospective analytics have been performed. Results reveal that most of the research study has been performed within small and medium sized urban hospitals so there is wide scope for research within rural and remote hospitals with NICU set ups. Results have shown creating a HAaaS approach where data acquisition and data analytics are not tightly coupled remains an open research area. Reviewed articles have described architecture and base technologies for neonatal health monitoring with an IoT approach. CONCLUSIONS The current work supports implementation of the expanded Artemis cloud as a commercial offering to healthcare facilities in Canada and worldwide to provide cloud computing services to critical care. However, no work till date has been completed for low resource setting environment within healthcare facilities in India which results in scope for research. It is observed that all the big data analytics frameworks which have been reviewed in this study have tight coupling of components within the framework, so there is a need for a framework with functional decoupling of components.


2022 ◽  
pp. 1477-1503
Author(s):  
Ali Al Mazari

HIV/AIDS big data analytics evolved as a potential initiative enabling the connection between three major scientific disciplines: (1) the HIV biology emergence and evolution; (2) the clinical and medical complex problems and practices associated with the infections and diseases; and (3) the computational methods for the mining of HIV/AIDS biological, medical, and clinical big data. This chapter provides a review on the computational and data mining perspectives on HIV/AIDS in big data era. The chapter focuses on the research opportunities in this domain, identifies the challenges facing the development of big data analytics in HIV/AIDS domain, and then highlights the future research directions of big data in the healthcare sector.


Author(s):  
Zhaohao Sun ◽  
Andrew Stranieri

Intelligent analytics is an emerging paradigm in the age of big data, analytics, and artificial intelligence (AI). This chapter explores the nature of intelligent analytics. More specifically, this chapter identifies the foundations, cores, and applications of intelligent big data analytics based on the investigation into the state-of-the-art scholars' publications and market analysis of advanced analytics. Then it presents a workflow-based approach to big data analytics and technological foundations for intelligent big data analytics through examining intelligent big data analytics as an integration of AI and big data analytics. The chapter also presents a novel approach to extend intelligent big data analytics to intelligent analytics. The proposed approach in this chapter might facilitate research and development of intelligent analytics, big data analytics, business analytics, business intelligence, AI, and data science.


2017 ◽  
pp. 83-99
Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


2017 ◽  
Vol 29 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Patricia Kuzmenko FURLAN ◽  
Fernando José Barbin LAURINDO

Resumo A era do big data já é realidade para empresas e indivíduos, e a literatura acadêmica sobre o tema tem crescido rapidamente nos últimos anos. Neste artigo, pretendeu-se identificar quais são os principais nichos e vertentes de publicação sobre o big data analytics. A opção metodológica foi realizar pesquisa bibliométrica na base de dados ISI Web of Science, utilizando-se aquele termo para focar as práticas de gestão de big data. Foi possível identificar cinco grupos distintos dentre os artigos encontrados: evolução do big data; gestão, negócios e estratégia; comportamento humano e aspectos socioculturais; mineração dos dados (data mining) e geração de conhecimento; e Internet das Coisas. Concluiu-se que o tema é emergente e pouco consolidado, apresentando grande variação nos termos empregados, o que influencia nas buscas bibliográficas. Como resultado complementar da pesquisa, foram identificadas as principais palavras-chave empregadas nas publicações sobre big data analytics, o que contribui para as pesquisas bibliográficas de estudos futuros.


Sign in / Sign up

Export Citation Format

Share Document