scholarly journals Quasi-Z-Source Four-Leg Inverter with PV by using Model Predictive Control Scheme

Author(s):  
Konda Ramanaiah ◽  
P. Rajasekhar

The Implementation of Quasi-Z-Source Four-Leg Inverter with PV by using Model Predictive Control Scheme is proposed in this paper. In order to reduce the drawbacks of traditional three phase voltage source inverter (VSI). Photovoltaic (PV) is a term which converts the light into electricity. This topology features a wide range of voltage gain which is suitable for applications in renewable energy-based power systems, where the output of the renewable energy sources varies widely with operating conditions such as wind speed, solar irradiation and temperature. To improve the capability of the controller, an MPC scheme is used which implements a discrete-time model of the system. The controller handles each phase current independently, which adds flexibility to the system. The performance of quasi z source three-phase four-leg VSI with PV by using model predictive control (MPC) was simulated using MATLAB Simulink under balanced and unbalanced load conditions as well as single-phase open-circuit fault condition.

AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1241-1259
Author(s):  
Lei Liu ◽  
◽  
Takeyoshi Kato ◽  
Paras Mandal ◽  
Alexey Mikhaylov ◽  
...  

<abstract><p>This work presents a load frequency control scheme in Renewable Energy Sources(RESs) power system by applying Model Predictive Control(MPC). The MPC is designed depending on the first model parameter and then investigate its performance on the second model to confirm its robustness and effectiveness over a wide range of operating conditions. The first model is 100% RESs system with Photovoltaic generation(PV), wind generation(WG), fuel cell, seawater electrolyzer, and storage battery. From the simulation results of the first case, it shows the control scheme is efficiency. And base on the good results of the first case study, to propose a second case using a 10-bus power system of Okinawa island, Japan, to verify the efficiency of proposed MPC control scheme again. In addition, in the second case, there also applied storage devices, demand-response technique and RESs output control to compensate the system frequency balance. Last, there have a detailed results analysis to compare the two cases simulation results, and then to Prospects for future research. All the simulations of this work are performed in Matlab®/Simulink®.</p></abstract>


The paper presence a Fuzzy Model Predictive Control (FMPC) for grid tied inverter with multiport DC-DC converter. Three phase grid tied inverter with multiple renewable energy sources are widely used to connect the distributive generating systems to the utility grid. Compare with the conventional control schemes, FMPC scheme is suitable for distributed generation system for its unique advantages likes reliable, fast and more accurate. In this proposed system, different sources having nonlinear parameters and it’s controlled by Fuzzy system. All linear states of three phase grid connected inverters are tested to attain the control objectives. FMPC is proposed to reduce the Total Harmonic Distortion (THD) of the output power. In the proposed system, the inverter control algorithm is developed using some essential vectors. The aim is to monitor the three phase grid current stability and improve the constancy function of the grid-tied inverter during variation of grid voltage. The grid tied converter is designed in two phase standing vector (αβ)model, and the FMPC of grid tied inverter is realized during variation of grid voltage. The simulation results show the superiority of the FMPC in control strategy


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


Sign in / Sign up

Export Citation Format

Share Document