scholarly journals Video anomaly detection using unsupervised deep learning methods

2018 ◽  
Author(s):  
Mengjia Yan
2020 ◽  
Vol 24 (4) ◽  
pp. 179
Author(s):  
Zhuonan He ◽  
Cong Quan ◽  
Siyuan Wang ◽  
Yuanzheng Zhu ◽  
Minghui Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yafen Li ◽  
Wen Li ◽  
Jing Xiong ◽  
Jun Xia ◽  
Yaoqin Xie

Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.


Author(s):  
Aleksandra Mikhailova ◽  
Niall M Adams ◽  
Christopher A Hallsworth ◽  
F Din-Houn Lau ◽  
Daniel N Jones

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 30387-30399 ◽  
Author(s):  
Ren-Hung Hwang ◽  
Min-Chun Peng ◽  
Chien-Wei Huang ◽  
Po-Ching Lin ◽  
Van-Linh Nguyen

2021 ◽  
Vol 15 ◽  
Author(s):  
Lakshmi Annamalai ◽  
Anirban Chakraborty ◽  
Chetan Singh Thakur

Event-based cameras are bio-inspired novel sensors that asynchronously record changes in illumination in the form of events. This principle results in significant advantages over conventional cameras, such as low power utilization, high dynamic range, and no motion blur. Moreover, by design, such cameras encode only the relative motion between the scene and the sensor and not the static background to yield a very sparse data structure. In this paper, we leverage these advantages of an event camera toward a critical vision application—video anomaly detection. We propose an anomaly detection solution in the event domain with a conditional Generative Adversarial Network (cGAN) made up of sparse submanifold convolution layers. Video analytics tasks such as anomaly detection depend on the motion history at each pixel. To enable this, we also put forward a generic unsupervised deep learning solution to learn a novel memory surface known as Deep Learning (DL) memory surface. DL memory surface encodes the temporal information readily available from these sensors while retaining the sparsity of event data. Since there is no existing dataset for anomaly detection in the event domain, we also provide an anomaly detection event dataset with a set of anomalies. We empirically validate our anomaly detection architecture, composed of sparse convolutional layers, on this proposed and online dataset. Careful analysis of the anomaly detection network reveals that the presented method results in a massive reduction in computational complexity with good performance compared to previous state-of-the-art conventional frame-based anomaly detection networks.


Sign in / Sign up

Export Citation Format

Share Document