scholarly journals A Comparative Study of Unsupervised Deep Learning Methods for MRI Reconstruction

2020 ◽  
Vol 24 (4) ◽  
pp. 179
Author(s):  
Zhuonan He ◽  
Cong Quan ◽  
Siyuan Wang ◽  
Yuanzheng Zhu ◽  
Minghui Zhang ◽  
...  
2020 ◽  
Vol 140 ◽  
pp. 110121 ◽  
Author(s):  
Abdelhafid Zeroual ◽  
Fouzi Harrou ◽  
Abdelkader Dairi ◽  
Ying Sun

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2692 ◽  
Author(s):  
Juncheng Zhu ◽  
Zhile Yang ◽  
Monjur Mourshed ◽  
Yuanjun Guo ◽  
Yimin Zhou ◽  
...  

Load forecasting is one of the major challenges of power system operation and is crucial to the effective scheduling for economic dispatch at multiple time scales. Numerous load forecasting methods have been proposed for household and commercial demand, as well as for loads at various nodes in a power grid. However, compared with conventional loads, the uncoordinated charging of the large penetration of plug-in electric vehicles is different in terms of periodicity and fluctuation, which renders current load forecasting techniques ineffective. Deep learning methods, empowered by unprecedented learning ability from extensive data, provide novel approaches for solving challenging forecasting tasks. This research proposes a comparative study of deep learning approaches to forecast the super-short-term stochastic charging load of plug-in electric vehicles. Several popular and novel deep-learning based methods have been utilized in establishing the forecasting models using minute-level real-world data of a plug-in electric vehicle charging station to compare the forecasting performance. Numerical results of twelve cases on various time steps show that deep learning methods obtain high accuracy in super-short-term plug-in electric load forecasting. Among the various deep learning approaches, the long-short-term memory method performs the best by reducing over 30% forecasting error compared with the conventional artificial neural network model.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yafen Li ◽  
Wen Li ◽  
Jing Xiong ◽  
Jun Xia ◽  
Yaoqin Xie

Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.


2020 ◽  
Author(s):  
Ivan Muhammad Siegfried

In 2020, the world is facing new and emerging virus called COVID-19 where the transmission could be halted using a face mask. A method and model needed to anticipate the spread of such virus. We study some transfer and deep learning methods: MobileNetV2, ResNet50V2, and Xception. The result is that the usage of ResNet50V2 and Xception for face image dataset using mask has better accuracy and precision than that of MobileNetV2 method.


2021 ◽  
Vol 7 (3) ◽  
pp. 108-115
Author(s):  
Kavita Avinash Patil ◽  
KV Mahendra Prashanth ◽  
Dr. A Ramalingaiah

Sign in / Sign up

Export Citation Format

Share Document