scholarly journals Robustness Analysis of Model Parameters for Sediment Transport Equation Development

2019 ◽  
Vol 12 ◽  
pp. 1-17
Author(s):  
Nadiatul Adilah Ahmad Abdul Ghani ◽  
Junaidah Ariffin ◽  
Duratul Ain Tholibon

Robustness analysis of model parameters for sediment transport equation development is carried out using 256 hydraulics and sediment data from twelve Malaysian rivers. The model parameters used in the analyses include parameters in equations by Ackers-White, Brownlie, Engelund-Hansen, Graf, Molinas-Wu, Karim-Kennedy, Yang, Ariffin and Sinnakaudan. Seven parameters in five parameter classes were initially tested. Robustness of the model parameters was measured on the statistical relations through Evolutionary Polynomial Regression (EPR) technique and further examined using the discrepancy ratio of the predicted versus the measured values. Results from analyses suggest  (ratio of shear velocity to flow velocity) and  (ratio of hydraulic radius to mean sediment diameter) to be the most significant and influential parameters for the development of sediment transport equation.

2005 ◽  
Vol 3 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Chang Chun Kiat ◽  
Aminuddin Ab. Ghani ◽  
Nor Azazi Zakaria ◽  
Zorkeflee Abu Hasan ◽  
Rozi Abdullah

2008 ◽  
Vol 51 (5) ◽  
pp. 1675-1681 ◽  
Author(s):  
G. H. Zhang ◽  
B. Y. Liu ◽  
X. C. Zhang

2009 ◽  
Vol 11 (3-4) ◽  
pp. 211-224 ◽  
Author(s):  
D. A. Savic ◽  
O. Giustolisi ◽  
D. Laucelli

Physically-based models derive from first principles (e.g. physical laws) and rely on known variables and parameters. Because these have physical meaning, they also explain the underlying relationships of the system and are usually transportable from one system to another as a structural entity. They only require model parameters to be updated. Data-driven or regressive techniques involve data mining for modelling and one of the major drawbacks of this is that the functional form describing relationships between variables and the numerical parameters is not transportable to other physical systems as is the case with their classical physically-based counterparts. Aimed at striking a balance, Evolutionary Polynomial Regression (EPR) offers a way to model multi-utility data of asset deterioration in order to render model structures transportable across physical systems. EPR is a recently developed hybrid regression method providing symbolic expressions for models and works with formulae based on pseudo-polynomial expressions, usually in a multi-objective scenario where the best Pareto optimal models (parsimony versus accuracy) are selected from data in a single case study. This article discusses the improvement of EPR in dealing with multi-utility data (multi-case study) where it has been tried to achieve a general model structure for asset deterioration prediction across different water systems.


2018 ◽  
Vol 40 ◽  
pp. 05021
Author(s):  
Pablo Cañada-Pereira ◽  
Patricio Bohorquez

In this work, we consider the long-standing problem of capturing dune formation in an erodible-bed channel at subcritical speed by using a reduced order model of depth-averaged equations. The pioneering study by Reynolds [1] showed that the standard Saint-Venant-Exner equations are unconditionally stable at subcritical Froude number. Hence, the use of depthaveraged flow equations, which are commonly used by the hydraulic community, prevents the formation of bedforms as dunes. Recently, Cañada-Pereira & Bohorquez [2] have proposed a simple sediment transport formulation able to capture the formation of dune when coupled with the Saint-Venant equations. We replace the standard Exner equation with a non-equilibrium sediment transport equation that includes the following necessary ingredients: first, a phase shift in the particle entrainment rate; second, a particle diffusivity and an eddy viscosity. Subsequently, we solve the linear stability problem of an erodiblebed channel and show that the neutral curve properly captures the bed instability both in subcritical regime (i.e. dune) and supercritical flow (i.e. antidune and roll wave). Finally, we corroborate the capabilities of the model by means of non-linear numerical simulations which reproduce the growth of dune and antidune in agreement with experiments.


Author(s):  
Isabelle Farout-Fréson ◽  
Emmanuel Lefrançois ◽  
Gouri Dhatt ◽  
Philippe Sergent

We are interested here in the mixture composed of incompressible fluid and a certain mass of fluidised solid. The proposed model is based on the averaged form of the hydrodynamic biphasic equations, associated with a sediment transport equation with a specific numerical settling velocity sf w adapted for the dumped dredged material case. Both models (hydrodynamics and transport) are coupled considering the variation of density with a forward scheme. Calibrated on the convective descent on three experimental campaigns in canal of dumping of dredged materials, the model gives a very good agreement of convective descent with almost twenty experiments for materials 100% sand, 100% silt or mixture sand/silt without or with a horizontally ambient current (Villaret et al., 1997; Boutin 1999).


Sign in / Sign up

Export Citation Format

Share Document