scholarly journals Stochastic Stability and Analytical Solution with Homotopy Perturbation Method of Multicompartment Non-Linear Epidemic Model with Saturated Rate

Author(s):  
Laid Chahrazed

In this work, we consider a nonlinear epidemic model with a saturated incidence rate. we consider a population of size N(t) at time t, this population is divided into six subclasses, with N(t)=S(t)+I(t)+I₁(t)+I₂(t)+I₃(t)+Q(t). Where S(t), I(t), I₁(t), I₂(t), I₃(t), and Q(t) denote the sizes of the population susceptible to disease, infectious members, and quarantine members, respectively. We have made the following contributions: 1. The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determined by the ratio called the basic reproductive number. 2. We find the analytical solution of the nonlinear epidemic model by Homotopy perturbation method. 3. Finally the stochastic stabilities. The study of its sections are justified with theorems and demonstrations under certain conditions. In this work, we have used the different references cited in different studies in the three sections already mentioned.

Author(s):  
Laid Chahrazed

In this work, we consider a nonlinear epidemic model with temporary immunity and saturated incidence rate. Size N(t) at time t, is divided into three sub classes, with N(t)=S(t)+I(t)+Q(t); where S(t), I(t) and Q(t) denote the sizes of the population susceptible to disease, infectious and quarantine members with the possibility of infection through temporary immunity, respectively. We have made the following contributions: The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determine by the ratio called the basic reproductive number, This paper study the reduce model with replace S with N, which does not have non-trivial periodic orbits with conditions. The endemic -disease point is globally asymptotically stable if R0 ˃1; and study some proprieties of equilibrium with theorems under some conditions. Finally the stochastic stabilities with the proof of some theorems. In this work, we have used the different references cited in different studies and especially the writing of the non-linear epidemic mathematical model with [1-7]. We have used the other references for the study the different stability and other sections with [8-26]; and sometimes the previous references.


2008 ◽  
Vol 63 (1-2) ◽  
pp. 19-23 ◽  
Author(s):  
Mohammad Taghi Darvishi ◽  
Farzad Khani

We propose He’s homotopy perturbation method (HPM) to solve stiff systems of ordinary differential equations. This method is very simple to be implemented. HPM is employed to compute an approximation or analytical solution of the stiff systems of linear and nonlinear ordinary differential equations.


Sign in / Sign up

Export Citation Format

Share Document