scholarly journals Robust Direction of Arrival Estimation Using Uniform Circular Antenna Array based on Total Forward - Backward Matrix Pencil Method

Author(s):  
Han Trong Thanh ◽  
Do Trong Tuan ◽  
Nguyen Trong Duc ◽  
Vu Van Yem

In  this  paper,  we  propose  an  approach  to estimate  the  Direction  of  Arrival  (DOA)  of  Radio coherent  incoming  signals  using  the  Total  Forward  – Backward  Matrix  Pencil  algorithm  (TFBMP).  This algorithm  works  directly  on  samples  of  signals impinging  on  an  M  –  element  Uniform  Circular Antenna (UCA) array, which has a smaller size as well as  larger  observation  angle  in  comparison  with  the Uniform  Linear  Antenna  (ULA)  array.  Therefore,  the correlation  between  the  received  signals  does  not significantly  impact  on  its performance  and  efficiency. Furthermore,  this algorithm  can  also  extract  the  DOA information  with  only  one  snapshot  of  signal. Simulation  results  for  DOA  estimation  using  the proposed approach for different situations of  incoming signals  as  well  as  the  number  of  snapshots  in  the presence  of  noise  will  be  assessed  to  verify  its performance.

2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hoi-Shun Lui ◽  
Hon Tat Hui

Performance evaluation of direction-of-arrival (DOA) estimation algorithms has continuously drawn significant attention in the past years. Most previous studies were conducted under the situation that antenna element separation is about half wavelength in order to avoid the appearance of grating lobes. On the other hand, recent developments in wireless communications have favoured the use of portable devices that utilize compact arrays with antenna element separations of less than half wavelength. Performance evaluation of DOA estimation algorithms employing compact arrays is an important and fundamental issue, but it has not been fully studied. In this paper, the performance of the matrix pencil method (MPM) that applies to DOA estimations is investigated through Monte Carlo simulations. The results show that closely spaced emitters can be accurately resolved using linear compact array with an array aperture as small as around half wavelength.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhi-Chao Sha ◽  
Zhang-Meng Liu ◽  
Zhi-Tao Huang ◽  
Yi-Yu Zhou

This paper addresses the problem of direction-of-arrival (DOA) estimation of coherent signals in the presence of unknown mutual coupling, and an autoregression (AR) model-based method is proposed. The effects of mutual coupling can be eliminated by the inherent mechanism of the proposed algorithm, so the DOAs can be accurately estimated without any calibration sources. After the mixing matrix is estimated by independent component analysis (ICA), several parameter equations are established upon the mixing matrix. Finally, all DOAs of coherent signals are estimated by solving these equations. Compared with traditional methods, the proposed method has higher angle resolution and estimation accuracy. Simulation results demonstrate the effectiveness of the algorithm.


2021 ◽  
Vol 4 (2) ◽  
pp. 23-32
Author(s):  
Fatimah A. Salman ◽  
Bayan M. Sabbar

Sparse array such as the coprime array is one of the most preferable sparse arrays for direction of arrival estimation due to its properties, like simplicity, capability of resolving more sources than the number of elements and resistance to mutual coupling issue.  In this paper, a new coprime array model is proposed to increase the number of degree of freedom (DOF) and improve the performance of coprime array.   The new designed array can avoid the mutual coupling by minimizing the lag redundancy and expand the central lags in the virtual difference co-array. Thus, the propose structure can resolve more sources than the prototype coprime array using the same number of elements with improved direction of arrival estimation. Simulation results demonstrate that the proposed array model is more efficient than the others coprime array model.


2009 ◽  
Vol 6 (16) ◽  
pp. 1168-1173 ◽  
Author(s):  
Muhammad Faisal Khan ◽  
Muhammad Tufail

2012 ◽  
Vol 263-266 ◽  
pp. 135-138
Author(s):  
Xue Bing Han ◽  
Zhao Jun Jiang

In this paper, we account for efficient approach of direction-of-arrival estimation based on sparse reconstruction of sensor measurements with an overcomplete basis. MSD-FOCUSS ( MMV Synchronous Descending FOCal Underdetermined System Solver) algorithm is developed against to sparse reconstruction in multiple-measurement-vectors (MMV) system where noise perturbations exist in both the measurements and sensing matrix. The paper shows how sparse-signal model of DOA estimation is established and MSD-FOCUSS is derived, then the simulation results illustrate the advantage of MSD-FOCUSS when it is used to solve the problem of DOA estimation.


Sign in / Sign up

Export Citation Format

Share Document