array aperture
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 41)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 26 (1) ◽  
pp. 43-54
Author(s):  
Ahmed J. Abdulqader ◽  
◽  
Raad H. Thaher ◽  
Jafar R. Mohammed ◽  
◽  
...  

In practice, random errors in the excitations (amplitude and phase) of array elements cause undesired variations in the array patterns. In this paper, the clustered array elements with tapered amplitude excitations technique are introduced to reduce the impact of random weight errors and recover the desired patterns. The most beneficial feature of the suggested method is that it can be used in the design stage to count for any amplitude errors instantly. The cost function of the optimizer used is restricted to avoid any unwanted rises in sidelobe levels caused by unexpected perturbation errors. Furthermore, errors on element amplitude excitations are assumed to occur either randomly or sectionally (i.e., an error affecting only a subset of the array elements) through the entire array aperture. The validity of the proposed approach is entirely supported by simulation studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yinsheng Wang ◽  
WeiJia Cui ◽  
Yuxi Du ◽  
Bin Ba ◽  
Fengtong Mei

As we all know, nested array can obtain a larger array aperture and more degrees of freedom using fewer sensors. In this study, we not only designed an enhanced symmetric nested array (ESNA), which achieved more consecutive lags and more unique lags compared with a generalized nested array but also developed a special cumulant matrix, in the case of a given number of sensors, which can automatically generate the largest consecutive lags of the array. First, the direction-of-arrivals (DOAs) of mixed sources are estimated using the special cumulant matrix. Then, we can estimate the range of the near-field source in the mixed source using a one-dimensional spectral search through estimated DOAs, and in the mixed sources, the near-field and far-field sources are classified by bringing in the range parameter. The largest consecutive lags and composition method of ESNA are also given, under a given number of sensors.Our algorithm has moderate computation complexity, which provides a higher resolution and improves the parameters’ estimation accuracy. Numerical simulation results demonstrate that the proposed array showed an outstanding performance under estimation accuracy and resolution ability for both DOA and range estimation compared with existing arrays of the same physical array sensors.


2021 ◽  
Author(s):  
Takashi Mizuno ◽  
Joel Le Calvez ◽  
Theo Cuny ◽  
Yu Chen

Abstract The single monitoring well configuration is a favorable option for microseismic monitoring considering risk and cost. It has commonly been used in various industries for decades. When using a single monitoring well, we rely among other things on the waveforms’ polarization information to accurately locate detected microseismic events. Additionally, using a large array aperture reduces hypocenter's uncertainty. Instead of solely relying on 3C geophones to achieve such objectives, we propose to combine 3C sensors and distributed acoustic sensing (DAS) equipment. It is quite a cost-effective solution, and it enables us to leverage each system's strength while minimizing their respective limitations when considered individually. We present the technical feasibility of such a hybrid microseismic monitoring system using data acquired during a monitoring campaign performed in the Montney formation, Canada. In this dataset, the optic fiber (DAS) is located in the wireline cable used to deploy the 3C geophones; themselves located at the bottom of the DAS wireline cable. Though different acquisition systems are employed for the geophone array and the DAS array, both datasets are GPS time stamped so that data can be processed properly. We scan the DAS data using an STA/LTA event detection, and we integrate with the 3C geophone data. We find the microseismic waveform in both the DAS and the geophone sections and confirm the arrival times are consistent between DAS and geophones. Once datasets are merged, we determine hypocenters using a migration-based event location method for such hybrid array. The uncertainty associated with the event located using the hybrid DAS – geophone array is smaller than for any of the systems looked at independently thanks to the increased array aperture. This case study demonstrates the viability and efficiency of the next generation of a single well acquisition system for microseismic monitoring. Not only does it lower event location uncertainty, but it is also more reliable and cost-effective than the conventional approaches.


Author(s):  
Fei Zhang ◽  
Chuantang Ji ◽  
Zijing Zhang ◽  
Dayu Yin ◽  
Yi Wang

AbstractAiming at the problems of low degree of freedom, small array aperture, and phase ambiguity in traditional coprime array direction-of-arrival estimation methods, a non-circular signal DOA estimation method based on expanded coprime array MIMO radar is proposed. Firstly, this method combines the coprime array and the MIMO radar to form transmitter and receiver array. Secondly, the array is expanded using the non-circular signal characteristics to reconstruct the received signal matrix. Then the dimensionality reduction is performed. The two-dimensional spectral peak search is converted into an optimization problem, and the optimization of the two-dimensional MUSIC algorithm is reconstructed using constraints, and a cost function is constructed to solve the problem. In addition, use the power series of the noise eigenvalues to correct the noise subspace to further improve the accuracy of the algorithm. Finally, the problem of no phase ambiguity in the method in this article is derived. Simulation experiments show that the method in this article can effectively avoid phase ambiguity, greatly improve the degree of freedom, and expand the array aperture. Compared with the traditional MUSIC algorithm and the mutual prime array MUSIC algorithm, it has better resolution and DOA estimation accuracy.


2021 ◽  
Author(s):  
Jiaqiang Peng ◽  
Guimei Zheng

Abstract In order to make up for the problem that the tensor-based spatial smoothing DOA estimation algorithm cannot make good use of the physical aperture of the array, this paper proposes a tensor-based array virtual translation DOA estimation algorithm. Under the framework of the tensor-based DOA estimation algorithm, the algorithm applies the array virtual translation technique to the factor matrix obtained after tensor decomposition, which can be expanded into signal subspace and approximately has a Vandermonde structure. Furthermore, the available array aperture of the algorithm is expanded, the estimation accuracy is improved, and the limitation of the physical array aperture on the algorithm’s multi-target estimation ability is broken. Since the processing technique proposed in this paper has nothing to do with the construction of tensors, this technique is suitable for all DOA estimation algorithms based on tensors. Theoretical analysis and numerical simulation verify the effectiveness of the algorithm proposed in this paper.


Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunxi Liu ◽  
Zhikun Chen ◽  
Dongliang Peng

Compared with uniform arrays, a generalized sparse array (GSA) can obtain larger array aperture because of its larger element spacing, which improves the accuracy of DOA estimation. At present, most DOA estimation algorithms are only suitable for the uniform arrays, while a few DOA estimate algorithms that can be applied to the GSA are unsatisfactory in terms of computational speed and accuracy. To compensate this deficiency, an improved DOA estimation algorithm which can be applied to the GSA is proposed in this paper. First, the received signal model of the GSA is established. Then, a fast DOA estimation method is derived by combining the weighted noise subspace algorithm (WNSF) with the concept of “transform domain” (TD). Theoretical analysis and simulation results show that compared with the traditional multiple signal classification (MUSIC) algorithm and the traditional WNSF algorithm, the proposed algorithm has higher accuracy and lower computational complexity.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Qian ◽  
Zhongtian Yang ◽  
Haowei Zeng

Direct position determination (DPD) for augmented coprime arrays is investigated in this paper. Augmented coprime array expands degree of freedom and array aperture and improves positioning accuracy. Because of poor stability and noise sensitivity of the subspace data fusion (SDF) method, we propose two weighted subspace data fusion (W-SDF) algorithms for direct position determination. Simulation results show that two W-SDF algorithms have a prominent promotion in positioning accuracy than SDF, Capon, and propagator method (PM) algorithm for augmented coprime arrays. SDF based on optimal weighting (OW-SDF) is slightly better than SDF based on SNR weighting (SW-SDF) in positioning accuracy. The performance for DPD of the W-SDF method with augmented coprime arrays is better than that of the W-SDF method with uniform arrays.


Author(s):  
Changsheng Yang ◽  
Hangbo Li ◽  
Liping Hu ◽  
Hong Liang

The traditional underwater sonar system usually achieve high angle resolution by increasing array aperture and the number of array elements, but this method will inevitably lead to complex system and high cost. Given that big brown bats have obtained surprisingly high resolution using a simple system, this paper proposes a bionic target localization method. First, a range-azimuth joint dictionary was constructed based on the bionic system of multi-harmonic emission and double random array reception. Then, the coherence characteristic of the dictionary was analyzed and the range and azimuth of the target were estimated, and at last the experimental verification was completed. The results show that the bionic range-azimuth joint estimation based on sparse signal representation can achieve high-precision target localization under the condition of echo high aliasing.


Sign in / Sign up

Export Citation Format

Share Document