signal simulation
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 48)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Aymen Khaleel ◽  
Ertan Zencir ◽  
Hasan Aksoy

Estimation of signal power levels at the output of integrated receiver building blocks is a vital function as the block voltage or power gains are set based on sensed power levels to maintain constant levels at block outputs in the receiver chain. RF and IF level real-time gain settings are determined with Automatic Gain Control (AGC) loops. AGC loop circuit topologies are usually based on analog detection circuits. These analog power detection circuits are based on techniques such as envelope detection, and logarithmic amplification usually accompanied by severe accuracy issues such as Process, Voltage and Temperature (PVT) spreads preventing correct gain adjustments. Adopting a dominantly digital approach to detect the signal power would ensure a significant reduction in PVT spreads. This work presents a review of the subsampling digital power estimation to create low power digital power estimations alternative to analog methods. The simulations of the method are applied to an AM and a 64-QAM signal. Simulation results show that the power estimation error is within the acceptable level of [Formula: see text][Formula: see text]dB.


2021 ◽  
Author(s):  
Yusi Zhang ◽  
Yong Li ◽  
Xiaojie Fang ◽  
Xuejun Sha ◽  
Yuqing Feng ◽  
...  

Abstract The increasing number of vehicles brings ubiquitous connectivity and huge information interaction, implementing with limited spectrum resource. Focusing on the higher spectral efficiency requirement, a compressive OFDM system is proposed in this paper. The idea of compressing the transmission of OFDM signal for spectral efficiency enhancement origins from GP extrapolation algorithm for bandlimited signal. In the proposed scheme, a truncation filter with deliberately designed compressed ratio and truncation mode is performed on the OFDM signal to generate the compressive OFDM signal. At the receiver, up-sampling and iterative extrapolation are conducted to recover from the partial signal. Simulation results show that the compressive OFDM signal could be compressed up to 0.5, presenting better compressive capability than the typical nonorthogonal SEFDM system. Further considering the ill-posed problem caused by the noise, a regularization approach is adopted to retain the convergence of recovery. Moreover, the proposed compressive OFDM system possesses the spectrally efficient advantage than SEFDM system. At the compressed ratio 0.5, the compressive OFDM system possesses better BER than SEFDM. At 10dB E b /N 0 , the throughput rate of the compressive OFDM is 2 times and 1.6 times higher than OFDM and SEFDM, respectively.


Author(s):  
Jinbae Suh ◽  
Chungho Ryu ◽  
Jaewon Yang ◽  
Yong-In Jung ◽  
Kyungwoo Yoo ◽  
...  

Author(s):  
Vladimir Suzev ◽  
Vladimir Gurenko ◽  
Boris Bychkov ◽  
Ivan Deykin

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4420
Author(s):  
Monika Makūnaitė ◽  
Rytis Jurkonis ◽  
Arūnas Lukoševičius ◽  
Mindaugas Baranauskas

Ultrasound echoscopy technologies are continuously evolving towards new modalities including quantitative parameter imaging, elastography, 3D scanning, and others. The development and analysis of new methods and algorithms require an adequate digital simulation of radiofrequency (RF) signal transformations. The purpose of this paper is the quantitative evaluation of RF signal simulation uncertainties in resolution and contrast reproduction with the model of a phased array transducer. The method is based on three types of standard physical phantoms. Digital 3D models of those phantoms are composed of point scatterers representing the weak backscattering of the background material and stronger backscattering from inclusions. The simulation results of echoscopy with sector scanning transducer by Field II software are compared with the RF output of the Ultrasonix scanner after scanning standard phantoms with 2.5 MHz phased array. The quantitative comparison of axial, lateral, and elevation resolutions have shown uncertainties from 9 to 22% correspondingly. The echoscopy simulation with two densities of scatterers is compared with contrast phantom imaging on the backscattered RF signals and B-scan reconstructed image, showing that the main sources of uncertainties limiting the echoscopy RF signal simulation adequacy are an insufficient knowledge of the scanner and phantom’s parameters. The attempt made for the quantitative evaluation of simulation uncertainties shows both problems and the potential of echoscopy simulation in imaging technology developments. The analysis presented could be interesting for researchers developing quantitative ultrasound imaging and elastography technologies looking for simulated raw RF signals comparable to those obtained from real ultrasonic scanning.


Sign in / Sign up

Export Citation Format

Share Document