scholarly journals Laser interferometry - Report #HT-01-2017

Author(s):  
David Naylor

An introduction is given to the optical setup and principle of operation of classical and holographic interferometers that are used for convective he at transfer measurements. The equations for the evaluation of the temperature field are derived and methods of analysis are discussed for both two-dimensional and three-dimensional temperature fields. Emphasis is given to techniques for measuring local heat transfer rates. For two-dimensional fields, a method is presented for measuring the surface temperature gradient directly from a finite (wedge) fringe interferogram. This “direct gradient method” is shown to be most useful for the measurement of low convective heat transfer rates. For three-dimensional fields, the equations for calculating the beam-averaged local heat flux are presented. The measurement of the fluid temperature averaged along the light beam is shown to be approximate. However, an analysis is presented showing that for most cases the error associated with temperature variations in the light beam direction is small. Digital image analysis of interferograms to obtain fringe spacings is also discussed briefly.

2021 ◽  
Author(s):  
David Naylor

An introduction is given to the optical setup and principle of operation of classical and holographic interferometers that are used for convective he at transfer measurements. The equations for the evaluation of the temperature field are derived and methods of analysis are discussed for both two-dimensional and three-dimensional temperature fields. Emphasis is given to techniques for measuring local heat transfer rates. For two-dimensional fields, a method is presented for measuring the surface temperature gradient directly from a finite (wedge) fringe interferogram. This “direct gradient method” is shown to be most useful for the measurement of low convective heat transfer rates. For three-dimensional fields, the equations for calculating the beam-averaged local heat flux are presented. The measurement of the fluid temperature averaged along the light beam is shown to be approximate. However, an analysis is presented showing that for most cases the error associated with temperature variations in the light beam direction is small. Digital image analysis of interferograms to obtain fringe spacings is also discussed briefly.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


2003 ◽  
Vol 125 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Jong-Hark Park ◽  
Min-Ho Chung

When heat is released by forced convection from electronic modules in a narrow printed circuit board channel, complex flow phenomena—such as stagnation and acceleration on the front surface, separation and reattachment on the top surface, wake or cavity flow near the rear surface—affect the heat transfer characteristics. The purpose of this study is to investigate how these flow conditions influence the local heat transfer from electronic modules. Experiments are performed on a three-dimensional array of hexahedral elements as well as on a two-dimensional array of rectangular elements. Naphthalene sublimation technique is employed to measure three-dimensional local mass transfer, and the mass transfer data are converted to their counterparts of the heat transfer process using the analogy equation between heat and mass transfer. Module location and streamwise module spacing are varied, and the effect of vortex generators on heat transfer enhancement is also examined. Dramatic change of local heat transfer coefficients is found on each surface of the module, and three-dimensional modules have a little higher heat transfer value than two-dimensional modules because of bypass flow. Longitudinal vortices formed by vortex generator enhance the mixing of fluids and thereby heat transfer, and the rectangular wing type vortex generator is found to be more effective than the delta wing type vortex generator.


1972 ◽  
Vol 94 (4) ◽  
pp. 355-359 ◽  
Author(s):  
E. O. Stoffel ◽  
J. R. Welty

The effects of square and reentrant entrances on flow regimes (no “appreciable” separation, large transitory stall, and fully developed two-dimensional stall) and local heat-transfer coefficients were determined with air flowing through a symmetrical, plane-wall, two-dimensional subsonic diffuser with one of the diverging walls heated and maintained isothermal. Flow and heat-transfer studies were made for the following ranges: 2θ = 0 to 45 deg, L/W = 6 to 18, and Rextut = 4 × 104 to 3 × 105. Results indicated that 2θ, L/W, and entrance configuration greatly affected the flow regime and heat transfer. Equations relating Um′ to Ut, Ur to Ut, and equations of the type Nu = C Pr0.6Rex0.8 are presented. For the configurations tested, heat-transfer rates were greater for reentrant than for square entrances.


Author(s):  
Detlef Pape ◽  
Sean Jenkins ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand ◽  
Martin Schnieder

Internal cooling schemes for blades in a gas turbine engine often are subject to compromises between increased pressure losses in return for greater levels of heat transfer required to maintain durability levels in the engine’s harsh environment. Rib configurations have been the subject of much study in past years, however these configurations are normally presumed to be used in “full-coverage” mode, meaning that the ribs are placed in the channel in a continuous and uniform manner. This study investigates the interaction between the bend effects downstream of a 180° bend, which cause higher local heat transfer, and the effect of ribs. Some of the ribs directly downstream of the 180° bend in the 2nd leg of a two pass high aspect ratio (4:1) channel were removed and the effect on heat transfer was assessed. Experimental results showed that the heat transfer level recovered quickly once ribs were encountered. As expected, some decrease in heat transfer was observed in the region where ribs were removed; however total pressure losses in the channel were also much lower. Results include detailed two-dimensional heat transfer distributions determined by the transient liquid crystal method as well as an analysis of the balance between pressure recovery and local heat transfer levels. Generally, for the accuracy of the transient liquid crystal technique in complex three-dimensional flows, strongly varying fluid temperatures present in and downstream of the bend region must be taken into account. For this study, time and position dependent fluid temperature distributions were measured to account for these effects, making it possible to obtain high quality heat transfer results in those regions.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


1993 ◽  
Vol 17 (2) ◽  
pp. 145-160
Author(s):  
P.H. Oosthuizen ◽  
A. Sheriff

Indirect passive solar crop dryers have the potential to considerably reduce the losses that presently occur during drying of some crops in many parts of the “developing” world. The performance so far achieved with such dryers has, however, not proved to be very satisfactory. If this performance is to be improved it is necessary to have an accurate computer model of such dryers to assist in their design. An important element is any dryer model is an accurate equation for the convective heat transfer in the collector. To assist in the development of such an equation, an experimental and numerical study of the collector heat transfer has been undertaken. In the experimental study, the collector was simulated by a 1m long by 1m wide channel with a gap of 4 cm between the upper and lower surfaces. The lower surface of the channel consisted of an aluminium plate with an electrical heating element, simulating the solar heating, bonded to its lower surface. Air was blown through this channel at a measured rate and the temperature profiles at various points along the channel were measured using a shielded thermocouple probe. Local heat transfer rates were then determined from these measured temperature profiles. In the numerical study, the parabolic forms of the governing equations were solved by a forward-marching finite difference procedure.


Sign in / Sign up

Export Citation Format

Share Document