The Influence of Including a Partially Smooth Section in the 2nd Leg of an Internally Ribbed Two Pass Cooling Channel

Author(s):  
Detlef Pape ◽  
Sean Jenkins ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand ◽  
Martin Schnieder

Internal cooling schemes for blades in a gas turbine engine often are subject to compromises between increased pressure losses in return for greater levels of heat transfer required to maintain durability levels in the engine’s harsh environment. Rib configurations have been the subject of much study in past years, however these configurations are normally presumed to be used in “full-coverage” mode, meaning that the ribs are placed in the channel in a continuous and uniform manner. This study investigates the interaction between the bend effects downstream of a 180° bend, which cause higher local heat transfer, and the effect of ribs. Some of the ribs directly downstream of the 180° bend in the 2nd leg of a two pass high aspect ratio (4:1) channel were removed and the effect on heat transfer was assessed. Experimental results showed that the heat transfer level recovered quickly once ribs were encountered. As expected, some decrease in heat transfer was observed in the region where ribs were removed; however total pressure losses in the channel were also much lower. Results include detailed two-dimensional heat transfer distributions determined by the transient liquid crystal method as well as an analysis of the balance between pressure recovery and local heat transfer levels. Generally, for the accuracy of the transient liquid crystal technique in complex three-dimensional flows, strongly varying fluid temperatures present in and downstream of the bend region must be taken into account. For this study, time and position dependent fluid temperature distributions were measured to account for these effects, making it possible to obtain high quality heat transfer results in those regions.

Author(s):  
Shoaib Ahmed ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract Liquid crystal thermography and infrared thermography techniques are typically employed to measure detailed surface temperatures, where local heat transfer coefficient (HTC) values are calculated by employing suitable conduction models. One such practice, which is very popular and easy to use, is the transient liquid crystal thermography using one-dimensional semi-infinite conduction model. In these experiments, a test surface with low thermal conductivity and low thermal diffusivity (e.g. acrylic) is used where a step-change in coolant air temperature is induced and surface temperature response is recorded. An error minimization routine is then employed to guess heat transfer coefficients of each pixel, where wall temperature evolution is known through an analytical expression. The assumption that heat flow in the solid is essentially in one-dimension, often leads to errors in HTC determination and this error depends on true HTC, wall temperature evolution and HTC gradient. A representative case of array jet impingement under maximum crossflow condition has been considered here. This heat transfer enhancement concept is widely used in gas turbine leading edge and electronics cooling. Jet impingement is a popular cooling technique which results in high convective heat rates and has steep gradients in heat transfer coefficient distribution. In this paper, we have presented a procedure for solution of three-dimensional transient conduction equation using alternating direction implicit method and an error minimization routine to find accurate heat transfer coefficients at relatively lower computational cost. The HTC results obtained using 1D semi-infinite conduction model and 3D conduction model were compared and it was found that the heat transfer coefficient obtained using the 3D model was consistently higher than the conventional 1D model by 3–16%. Significant deviations, as high as 8–20% in local heat transfer at the stagnation points of the jets were observed between h1D and h3D.


2021 ◽  
Author(s):  
David Naylor

An introduction is given to the optical setup and principle of operation of classical and holographic interferometers that are used for convective he at transfer measurements. The equations for the evaluation of the temperature field are derived and methods of analysis are discussed for both two-dimensional and three-dimensional temperature fields. Emphasis is given to techniques for measuring local heat transfer rates. For two-dimensional fields, a method is presented for measuring the surface temperature gradient directly from a finite (wedge) fringe interferogram. This “direct gradient method” is shown to be most useful for the measurement of low convective heat transfer rates. For three-dimensional fields, the equations for calculating the beam-averaged local heat flux are presented. The measurement of the fluid temperature averaged along the light beam is shown to be approximate. However, an analysis is presented showing that for most cases the error associated with temperature variations in the light beam direction is small. Digital image analysis of interferograms to obtain fringe spacings is also discussed briefly.


1989 ◽  
Vol 111 (4) ◽  
pp. 877-881 ◽  
Author(s):  
J. W. Baughn ◽  
P. T. Ireland ◽  
T. V. Jones ◽  
N. Saniei

Measurements of the local heat transfer coefficients on a pin fin (i.e., a short cylinder in crossflow) in a duct have been made using two methods, both of which employ liquid crystals to map an isotherm on the surface. The transient method uses the liquid crystal to determine the transient response of the surface temperature to a change in the fluid temperature. The local heat transfer coefficient is determined from the surface response time and the thermal properties of the substrate. The heated-coating method uses an electrically heated coating (vacuum-deposited gold in this case) to provide a uniform heat flux, while the liquid crystal is used to locate an isotherm on the surface. The two methods compare well, especially the value obtained near the center stagnation point of the pin fin where the difference in the thermal boundary condition of the two methods has little effect. They are close but differ somewhat in other regions.


2021 ◽  
Author(s):  
David Naylor

An introduction is given to the optical setup and principle of operation of classical and holographic interferometers that are used for convective he at transfer measurements. The equations for the evaluation of the temperature field are derived and methods of analysis are discussed for both two-dimensional and three-dimensional temperature fields. Emphasis is given to techniques for measuring local heat transfer rates. For two-dimensional fields, a method is presented for measuring the surface temperature gradient directly from a finite (wedge) fringe interferogram. This “direct gradient method” is shown to be most useful for the measurement of low convective heat transfer rates. For three-dimensional fields, the equations for calculating the beam-averaged local heat flux are presented. The measurement of the fluid temperature averaged along the light beam is shown to be approximate. However, an analysis is presented showing that for most cases the error associated with temperature variations in the light beam direction is small. Digital image analysis of interferograms to obtain fringe spacings is also discussed briefly.


Author(s):  
M. K. Chyu ◽  
Y. Yu ◽  
H. Ding ◽  
J. P. Downs ◽  
F. O. Soechting

The present study evaluates an innovative approach for enhancement of surface heat transfer in a channel using concavities, rather than protruding elements. Serving as a vortex generator, a concavity is expected to promote turbulent mixing in the flow bulk and enhance the heat transfer. Using a transient liquid crystal imaging system, local heat transfer distribution on the surface roughened by an staggered array based on two different shapes of concavities, i.e. hemispheric and tear-drop shaped, have been obtained, analyzed and compared. The results reveal that both concavity configurations induce a heat transfer enhancement similar to that of continuous rib turbulators, about 2.5 times their smooth counterparts 10,000 ≤ Re ≤ 50,000. In addition, both concavity arrays reveal remarkably low pressure losses that are nearly one-half the magnitudes incurred with protruding elements. In turbine cooling applications, the concavity approach is particularly attractive in reducing system weight and ease of manufacturing.


Author(s):  
J. W. Baughn ◽  
P. T. Ireland ◽  
T. V. Jones ◽  
N. Saniei

Measurements of the local heat transfer coefficients on a pin fin (i.e., a short cylinder in crossflow) in a duct have been made using two methods, both of which employ liquid crystals to map an isotherm on the surface. The transient method uses the liquid crystal to determine the transient response of the surface temperature to a change in the fluid temperature. The local heat transfer coefficient is determined from the surface response time and the thermal properties of the substrate. The heated-coating method uses an electrically heated coating (vacuum-deposited gold in this case) to provide a uniform heat flux while the liquid crystal is used to locate an isotherm on the surface. The two methods compare well, especially the value obtained near the center stagnation point of the pin fin where the difference in the thermal boundary condition of the two methods has little effect. They are close but differ somewhat in other regions.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-258 ◽  
Author(s):  
John P. C. W. Ling ◽  
Peter T. Ireland ◽  
Lynne Turner

New techniques for processing transient liquid crystal heat transfer experiment have been developed. The methods are able to measure detailed local heat transfer coefficient and adiabatic wall temperature in a three temperature system from a single transient test using the full intensity history recorded. Transient liquid crystal processing methods invariably assume that lateral conduction is negligible and so the heat conduction process can be considered one-dimensional into the substrate. However, in regions with high temperature variation such as immediately downstream of a film-cooling hole, it is found that lateral conduction can become significant. For this reason, a procedure which allows for conduction in three dimensions was developed by the authors. The paper is the first report of a means of correcting data from the transient heat transfer liquid crystal experiments for the effects of significant lateral conduction. The technique was applied to a film cooling system as an example and a detailed uncertainty analysis performed.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


2003 ◽  
Vol 125 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Jong-Hark Park ◽  
Min-Ho Chung

When heat is released by forced convection from electronic modules in a narrow printed circuit board channel, complex flow phenomena—such as stagnation and acceleration on the front surface, separation and reattachment on the top surface, wake or cavity flow near the rear surface—affect the heat transfer characteristics. The purpose of this study is to investigate how these flow conditions influence the local heat transfer from electronic modules. Experiments are performed on a three-dimensional array of hexahedral elements as well as on a two-dimensional array of rectangular elements. Naphthalene sublimation technique is employed to measure three-dimensional local mass transfer, and the mass transfer data are converted to their counterparts of the heat transfer process using the analogy equation between heat and mass transfer. Module location and streamwise module spacing are varied, and the effect of vortex generators on heat transfer enhancement is also examined. Dramatic change of local heat transfer coefficients is found on each surface of the module, and three-dimensional modules have a little higher heat transfer value than two-dimensional modules because of bypass flow. Longitudinal vortices formed by vortex generator enhance the mixing of fluids and thereby heat transfer, and the rectangular wing type vortex generator is found to be more effective than the delta wing type vortex generator.


Sign in / Sign up

Export Citation Format

Share Document