scholarly journals Design and analysis of transmission-level power system stability control

Author(s):  
Tu Phan

After the August 14, 2003 blackout, power system stability probelm has received a great deal of attention. This project is focused on the analysis of transient stability following disturbances. The project investigates three generator-excitation techniques for controlling the stability of power system. They are the manual control (constant excitation voltage), the automatic voltage regulator (AVR), and the automatic voltage regulator plus the power system stabilizer (PSS) that basically can be a led-leg compensator using a rotor speed deviation as an input feedback. This project carried out a computer simulation study of the power system stability for various disturbances conditions. The simulation results from the project have shown that AVR coupled PSS generator-excitation control can achieve the best power system stability, comparing to the manual or AVR control. A major contribution of this project is that a computer platform using MatLab/Simulink software was designed and can be used by other researchers for the power system stability study.

2021 ◽  
Author(s):  
Tu Phan

After the August 14, 2003 blackout, power system stability probelm has received a great deal of attention. This project is focused on the analysis of transient stability following disturbances. The project investigates three generator-excitation techniques for controlling the stability of power system. They are the manual control (constant excitation voltage), the automatic voltage regulator (AVR), and the automatic voltage regulator plus the power system stabilizer (PSS) that basically can be a led-leg compensator using a rotor speed deviation as an input feedback. This project carried out a computer simulation study of the power system stability for various disturbances conditions. The simulation results from the project have shown that AVR coupled PSS generator-excitation control can achieve the best power system stability, comparing to the manual or AVR control. A major contribution of this project is that a computer platform using MatLab/Simulink software was designed and can be used by other researchers for the power system stability study.


2020 ◽  
Vol 6 (3) ◽  
pp. 27-30
Author(s):  
Pramod Kumar Mehar ◽  
Mrs. Madhu Upadhyay

Power system stability is related to principles of rotational motion and the swing equation governing the electromechanical dynamic behavior. In the special case of two finite machines the equal area criterion of stability can be used to calculate the critical clearing angle on the power system, it is necessary to maintain synchronism, otherwise a standard of service to the consumers will not be achieved. With the increasing penetration of doubly fed induction generators (DFIGs), the impact of the DFIG on transient stability attracts great attention. Transient stability is largely dominated by generator types in the power system, and the dynamic characteristics of DFIG wind turbines are different from that of the synchronous generators in the conventional power plants. The analysis of the transient stability on DFIG integrated power systems has become a very important issue. This paper is a review of three types of stability condition. The first type of stability, steady state stability explains the maximum steady state power and the power angle diagram. There are several methods to improve system stability in which some methods are explained.


2014 ◽  
Vol 986-987 ◽  
pp. 1286-1290
Author(s):  
Jin Li ◽  
Ya Min Pi ◽  
Hui Yuan Yang

In this paper, the series converters of Distributed Power Flow Controller are the main object of study. Its mechanism of suppressing power system oscillations is studied by theoretical analysis and formula derivation, which relies on a single-machine infinite-bus power system, installed the series converters. Then based on the mechanism, adopting the classic PI control and the damping controller, designed the transient stability control loop for the series converters. Finally, simulations performed by PSCAD/EMTDC, the results show that DPFC device can effectively suppress oscillation and improve system stability.


2012 ◽  
Vol 463-464 ◽  
pp. 1663-1667
Author(s):  
Hai Na Hu ◽  
Wu Wang

Automatic Voltage Regulator (AVR) was applied to hold terminal voltage magnitude of a synchronous generator at a specified level and its stability seriously affects the security of power system. PID control was applied for AVR system control, but the parameters of PID controller were hard to determine, to overcome this problem, some intelligent techniques should be taken. Wavelet Neural Network (WNN) was constrictive and fluctuant of wavelet transform and has self-study, self adjustment and nonlinear mapping functions of neural networks, so the structure of WNN and PID tuning with WNN was proposed, the tuning algorithm was applied into AVR control system, the simulation was taken with normal BP neural network and WNN, the efficiency and advantages of this control strategy was successfully demonstrated which can applied into AVR system for power system stability.


SINERGI ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 205
Author(s):  
Widi Aribowo

In this paper, a Distributed Time-Delay Neural Network (DTDNN) algorithm is used to control the Power System Stabilizer (PSS) parameters to find the reliable conditions. The proposed DTDNN algorithm apply tapped delay line memory to set the PSS. In this study, DTDNN consists of a DTDNN-identifier and a DTDNN-controller. The performance of the system with DTDNN-PSS controller is compared with a Recurrent Neural Network PSS (RNN-PSS) and Conventional PSS (C-PSS). The results show the effectiveness of DTDNN-PSS design, and superior robust performance for enhancement power system stability compared to other with different cases.


Sign in / Sign up

Export Citation Format

Share Document