scholarly journals Seismic response of reinforced concrete elevated water towers.

Author(s):  
Aren Nazari

Modern composite elevated storage tanks were developed in late 1970's in response to increasing demand for a reliable, economical and low-maintenance water storage system in Canada and the U.S. The popularity of composite elevated water towers rose tremendously in the last 30 years, as the new type of construction offered many advantages over traditional elevated water storage tanks. Despite the increasing rate of construction, the performance of this type of structure under ground motions is not fully understood. During the recent earthquake of Bhuj 2001, many shaft staging elevated water towers experienced severe damages, signifying the lack of considerable ductility, redundancy and energy dissipation in the system. This thesis investigates the current approach to the design of shaft staging elevated towers, and also summarizes a comprehensive literature review of structural theories, latest research and studies. The response of a selected concrete shaft staging elevated tower, designed according to the currant [sic] practice and subjected to gradually increasing lateral load was investigated through a non-linear static finite element analysis. Additionally, the seismic performance of the structure during four different ground motions with various peak ground accelerations was studied through several time-history non-linear finite element analyses. The results of static and dynamic finite element analyses were used to evaluate and establish the response modification factor used for design of these types of structures.

2021 ◽  
Author(s):  
Aren Nazari

Modern composite elevated storage tanks were developed in late 1970's in response to increasing demand for a reliable, economical and low-maintenance water storage system in Canada and the U.S. The popularity of composite elevated water towers rose tremendously in the last 30 years, as the new type of construction offered many advantages over traditional elevated water storage tanks. Despite the increasing rate of construction, the performance of this type of structure under ground motions is not fully understood. During the recent earthquake of Bhuj 2001, many shaft staging elevated water towers experienced severe damages, signifying the lack of considerable ductility, redundancy and energy dissipation in the system. This thesis investigates the current approach to the design of shaft staging elevated towers, and also summarizes a comprehensive literature review of structural theories, latest research and studies. The response of a selected concrete shaft staging elevated tower, designed according to the currant [sic] practice and subjected to gradually increasing lateral load was investigated through a non-linear static finite element analysis. Additionally, the seismic performance of the structure during four different ground motions with various peak ground accelerations was studied through several time-history non-linear finite element analyses. The results of static and dynamic finite element analyses were used to evaluate and establish the response modification factor used for design of these types of structures.


2015 ◽  
Vol 4 (1) ◽  
pp. 169
Author(s):  
Ehsan Rajaie

In this paper, the dynamic behavior of water storage tanks in investigated. Using time-history analysis based on three major earthquakes, the performance of system is illustrated. Two conditions, first with damper and second with no damper are presented and the relevant results are compared. The main results consist of base shear forces and also maximum target displacements. 


2014 ◽  
Vol 39 (6) ◽  
pp. 4391-4403 ◽  
Author(s):  
L. Kalani Sarokolayi ◽  
B. Navayi Neya ◽  
H. R. Tavakoli ◽  
J. Vaseghi Amiri

2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2012 ◽  
Vol 28 ◽  
pp. e15-e16
Author(s):  
L.H.A. Raposo ◽  
L.C.M. Dantas ◽  
T.A. Xavier ◽  
A.G. Pereira ◽  
A. Versluis ◽  
...  

Bauingenieur ◽  
2015 ◽  
Vol 90 (05) ◽  
pp. 209-219
Author(s):  
Marcus Ricker ◽  
Frank Häusler

Während das Querkrafttragverhalten von Flachdecken im Bereich von Innenstützen (Durchstanzen) Gegenstand zahlreicher Untersuchungen ist, fehlen für Rand- und Eckstützen durch theoretische und experimentelle Untersuchungen abgesicherte Tragmodelle. Um das Tragverhalten im Bereich von Randstützen näher zu untersuchen, wurde neben vier Durchstanzversuchen eine umfangreiche Parameterstudie mit zwei nichtlinearen Finite-Elemente-Programmen durchgeführt. Dabei stand neben dem Einfluss der bezogenen Ausmitte e/c auf die Tragfähigkeit von Platten mit und ohne Durchstanzbewehrung der Einfluss der Vorspannung im Vordergrund. Es zeigte sich, dass das e/c-Verhältnis unabhängig von der Versagensart einen wesentlichen Einfluss auf die Durchstanztragfähigkeit hat. Eine Vorspannung erhöht die Durchstanztragfähigkeit signifikant bzw. reduziert die erforderliche Durchstanzbewehrungsmenge. Eine Steigerung der Maximaltragfähigkeit gegenüber gleich dicken hochbewehrten Stahlbetonplatten ist jedoch nur in geringem Maße möglich.


2020 ◽  
Vol 62 (4) ◽  
pp. 357-364
Author(s):  
Yusuf Aytaç Onur ◽  
Hakan Gelen

Abstract In this study, the stress on portal crane components at various payloads has been investigated theoretically, numerically and experimentally. The portal crane was computer-aided modeled and finite element analyses were performed so that the most stressed points at the each trolley position investigated on the main girder could be determined. In addition, the critical points were marked on the portal crane, and strain gages were attached to the those critical points so that stress values could be experimentally determined. The safety factor values at different payloads were determined by using finite element simulation. Results indicate that the most stressed component in the examined portal crane is the main girder. Experimental results indicate that the maximum stress value on the main girder is 3.05 times greater than the support legs and 8.99 times larger than the rail.


Sign in / Sign up

Export Citation Format

Share Document