scholarly journals Development of an Intravascular Doppler Optical Coherence Tomography Imaging Technique for Neurovascular Applications

Author(s):  
Barry Vuong

The rupture of an intracranial aneurysm can cause spontaneous subarachnoid hemorrhage and result in sudden death. A large portion of intracranial aneurysms occurs near the center of the head, at the skull base, which poses significant technical challenge to neurosurgeons due to limited accessibility. The utilization of angiography is prominent during the treatment of intracranial aneurysms. However, malapposition of stent or incomplete packing of the intracranial aneurysm can be difficult to assess with angiography, and could lead to severe postoperative complications. As a result, angiography may not be sufficient in determining the risk of rupture as the compensatory mechanisms are known to occur at the microstructural level due to the local hemodynamics in the arterial lumen, as well as in evaluating the intraoperative treatment. In this work, we describe a method for assessing intracranial aneurysm through the evaluation of blood flow within the lumen and morphological structures of the arterial wall with optical coherence tomography (OCT). Sterile intravascular fiber-optic catheters can be introduced in the artery to detect blood flow. Prior to this work, limited investigations of catheter based Doppler OCT (DOCT) were reported. A novel signal processing technique was developed to further reduce the effect of Doppler noise within a catheter based DOCT system. This technique consisted of splitting the interferogram of an OCT signal prior to estimating the Doppler shift. This split spectrum DOCT (ssDOCT) method was evaluated through flow models and porcine models, as well as through the correlation between ssDOCT algorithm and computational fluid dynamic (CFD) models. It was observed that ssDOCT provided improved Doppler artefact suppression over the conventional DOCT technique. ssDOCT also provided the ability to estimate lower velocities within the DOCT image to measure the hemodynamic patterns around stent struts in both the internal carotid and patient specific flow phantoms. An OCT imaging study was also conducted consisting of surgically resected human intracranial aneurysms. Further enhancement of the detection of these key morphological structures was demonstrated by an optical-attenuation imaging variant of OCT. The presented techniques could provide further insights to the cause of intracranial aneurysm rupture and vascular healing mechanisms.

2021 ◽  
Author(s):  
Barry Vuong

The rupture of an intracranial aneurysm can cause spontaneous subarachnoid hemorrhage and result in sudden death. A large portion of intracranial aneurysms occurs near the center of the head, at the skull base, which poses significant technical challenge to neurosurgeons due to limited accessibility. The utilization of angiography is prominent during the treatment of intracranial aneurysms. However, malapposition of stent or incomplete packing of the intracranial aneurysm can be difficult to assess with angiography, and could lead to severe postoperative complications. As a result, angiography may not be sufficient in determining the risk of rupture as the compensatory mechanisms are known to occur at the microstructural level due to the local hemodynamics in the arterial lumen, as well as in evaluating the intraoperative treatment. In this work, we describe a method for assessing intracranial aneurysm through the evaluation of blood flow within the lumen and morphological structures of the arterial wall with optical coherence tomography (OCT). Sterile intravascular fiber-optic catheters can be introduced in the artery to detect blood flow. Prior to this work, limited investigations of catheter based Doppler OCT (DOCT) were reported. A novel signal processing technique was developed to further reduce the effect of Doppler noise within a catheter based DOCT system. This technique consisted of splitting the interferogram of an OCT signal prior to estimating the Doppler shift. This split spectrum DOCT (ssDOCT) method was evaluated through flow models and porcine models, as well as through the correlation between ssDOCT algorithm and computational fluid dynamic (CFD) models. It was observed that ssDOCT provided improved Doppler artefact suppression over the conventional DOCT technique. ssDOCT also provided the ability to estimate lower velocities within the DOCT image to measure the hemodynamic patterns around stent struts in both the internal carotid and patient specific flow phantoms. An OCT imaging study was also conducted consisting of surgically resected human intracranial aneurysms. Further enhancement of the detection of these key morphological structures was demonstrated by an optical-attenuation imaging variant of OCT. The presented techniques could provide further insights to the cause of intracranial aneurysm rupture and vascular healing mechanisms.


2021 ◽  
Author(s):  
Barry Vuong

The rupture of an intracranial aneurysm can cause spontaneous subarachnoid hemorrhage and result in sudden death. A large portion of intracranial aneurysms occurs near the center of the head, at the skull base, which poses significant technical challenge to neurosurgeons due to limited accessibility. The utilization of angiography is prominent during the treatment of intracranial aneurysms. However, malapposition of stent or incomplete packing of the intracranial aneurysm can be difficult to assess with angiography, and could lead to severe postoperative complications. As a result, angiography may not be sufficient in determining the risk of rupture as the compensatory mechanisms are known to occur at the microstructural level due to the local hemodynamics in the arterial lumen, as well as in evaluating the intraoperative treatment. In this work, we describe a method for assessing intracranial aneurysm through the evaluation of blood flow within the lumen and morphological structures of the arterial wall with optical coherence tomography (OCT). Sterile intravascular fiber-optic catheters can be introduced in the artery to detect blood flow. Prior to this work, limited investigations of catheter based Doppler OCT (DOCT) were reported. A novel signal processing technique was developed to further reduce the effect of Doppler noise within a catheter based DOCT system. This technique consisted of splitting the interferogram of an OCT signal prior to estimating the Doppler shift. This split spectrum DOCT (ssDOCT) method was evaluated through flow models and porcine models, as well as through the correlation between ssDOCT algorithm and computational fluid dynamic (CFD) models. It was observed that ssDOCT provided improved Doppler artefact suppression over the conventional DOCT technique. ssDOCT also provided the ability to estimate lower velocities within the DOCT image to measure the hemodynamic patterns around stent struts in both the internal carotid and patient specific flow phantoms. An OCT imaging study was also conducted consisting of surgically resected human intracranial aneurysms. Further enhancement of the detection of these key morphological structures was demonstrated by an optical-attenuation imaging variant of OCT. The presented techniques could provide further insights to the cause of intracranial aneurysm rupture and vascular healing mechanisms.


2021 ◽  
Author(s):  
Barry Vuong

The rupture of an intracranial aneurysm can cause spontaneous subarachnoid hemorrhage and result in sudden death. A large portion of intracranial aneurysms occurs near the center of the head, at the skull base, which poses significant technical challenge to neurosurgeons due to limited accessibility. The utilization of angiography is prominent during the treatment of intracranial aneurysms. However, malapposition of stent or incomplete packing of the intracranial aneurysm can be difficult to assess with angiography, and could lead to severe postoperative complications. As a result, angiography may not be sufficient in determining the risk of rupture as the compensatory mechanisms are known to occur at the microstructural level due to the local hemodynamics in the arterial lumen, as well as in evaluating the intraoperative treatment. In this work, we describe a method for assessing intracranial aneurysm through the evaluation of blood flow within the lumen and morphological structures of the arterial wall with optical coherence tomography (OCT). Sterile intravascular fiber-optic catheters can be introduced in the artery to detect blood flow. Prior to this work, limited investigations of catheter based Doppler OCT (DOCT) were reported. A novel signal processing technique was developed to further reduce the effect of Doppler noise within a catheter based DOCT system. This technique consisted of splitting the interferogram of an OCT signal prior to estimating the Doppler shift. This split spectrum DOCT (ssDOCT) method was evaluated through flow models and porcine models, as well as through the correlation between ssDOCT algorithm and computational fluid dynamic (CFD) models. It was observed that ssDOCT provided improved Doppler artefact suppression over the conventional DOCT technique. ssDOCT also provided the ability to estimate lower velocities within the DOCT image to measure the hemodynamic patterns around stent struts in both the internal carotid and patient specific flow phantoms. An OCT imaging study was also conducted consisting of surgically resected human intracranial aneurysms. Further enhancement of the detection of these key morphological structures was demonstrated by an optical-attenuation imaging variant of OCT. The presented techniques could provide further insights to the cause of intracranial aneurysm rupture and vascular healing mechanisms.


2017 ◽  
Vol 10 (3) ◽  
pp. 290-296 ◽  
Author(s):  
P Berg ◽  
S Saalfeld ◽  
S Voß ◽  
T Redel ◽  
B Preim ◽  
...  

BackgroundComputational fluid dynamics (CFD) blood flow predictions in intracranial aneurysms promise great potential to reveal patient-specific flow structures. Since the workflow from image acquisition to the final result includes various processing steps, quantifications of the individual introduced potential error sources are required.MethodsThree-dimensional (3D) reconstruction of the acquired imaging data as input to 3D model generation was evaluated. Six different reconstruction modes for 3D digital subtraction angiography (DSA) acquisitions were applied to eight patient-specific aneurysms. Segmentations were extracted to compare the 3D luminal surfaces. Time-dependent CFD simulations were carried out in all 48 configurations to assess the velocity and wall shear stress (WSS) variability due to the choice of reconstruction kernel.ResultsAll kernels yielded good segmentation agreement in the parent artery; deviations of the luminal surface were present at the aneurysm neck (up to 34.18%) and in distal or perforating arteries. Observations included pseudostenoses as well as noisy surfaces, depending on the selected reconstruction kernel. Consequently, the hemodynamic predictions show a mean SD of 11.09% for the aneurysm neck inflow rate, 5.07% for the centerline-based velocity magnitude, and 17.83%/9.53% for the mean/max aneurysmal WSS, respectively. In particular, vessel sections distal to the aneurysms yielded stronger variations of the CFD values.ConclusionsThe choice of reconstruction kernel for DSA data influences the segmentation result, especially for small arteries. Therefore, if precise morphology measurements or blood flow descriptions are desired, a specific reconstruction setting is required. Furthermore, research groups should be encouraged to denominate the kernel types used in future hemodynamic studies.


Author(s):  
Rajgopal Mani ◽  
Jon Holmes ◽  
Kittipan Rerkasem ◽  
Nikolaos Papanas

Dynamic optical coherence tomography (D-OCT) is a relatively new technique that may be used to study the substructures in the retina, in the skin and its microcirculation. Furthermore, D-OCT is a validated method of imaging blood flow in skin microcirculation. The skin around venous and mixed arterio-venous ulcers was imaged and found to have tortuous vessels assumed to be angiogenic sprouts, and classified as dots, blobs, coils, clumps, lines, and curves. When these images were analyzed and measurements of vessel density were made, it was observed that the prevalence of coils and clumps in wound borders was significantly greater compared with those at wound centers. This reinforced the belief of inward growth of vessels from wound edge toward wound center which, in turn, reposed confidence in following the wound edge to study healing. D-OCT imaging permits the structure and the function of the microcirculation to be imaged, and vessel density measured. This offers a new vista of skin microcirculation and using it, to better understand angiogenesis in chronic wounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang Ryul Park ◽  
ByungKun Lee ◽  
Min Ji Lee ◽  
Kyuseok Kim ◽  
Wang-Yuhl Oh

AbstractWe developed a method to measure the relative blood flow speed using optical coherence tomography angiography (OCTA) in retina and choroid, and investigated the feasibility of this method for assessing microcirculatory function in rat models of sepsis and hemorrhagic shock. Two sepsis models, 6-h severe sepsis without treatment and 30-h moderate sepsis maintaining mean arterial pressure, and volume controlled hemorrhagic shock and fluid resuscitation model were used to see the change of microcirculation. The blood flow index (BFI), which was calculated from the OCTA images to represent the average relative blood flow, was decreasing during the 6-h severe sepsis model. Its change is in parallel with the mean arterial blood pressure (MAP) and blood lactate levels. In the 30-h moderate sepsis model, the BFI was decreased while maintaining MAP, and lactate was increased. In the hemorrhagic shock model, the change of BFI is in line with MAP and lactate levels. In all models, BFI change is more sensitive in choroid than in retina. This study presents the OCTA-based retinal and choroidal microcirculatory blood flow monitoring method and shows its utility for assessment of critical illness.


2021 ◽  
pp. 159101992110034
Author(s):  
Andre Monteiro ◽  
Demetrius K Lopes ◽  
Amin Aghaebrahim ◽  
Ricardo Hanel

Purpose Flow-diverters have revolutionized the endovascular treatment of intracranial aneurysms, offering a durable solution to aneurysms with high recurrence rates after conventional stent-assisted coiling. Events that occur after treatment with flow-diversion, such as in-stent stenosis (ISS) are not well understood and require further assessment. After assessing an animal model with Optical Coherence Tomography (OCT), we propose a concept that could explain the mechanism causing reversible ISS after treatment of intracranial aneurysms with flow-diverters. Methods Six Pipeline Flex embolization devices (PED-Flex), six PED with Shield technology (PED-Shield), and four Solitaire AB devices were implanted in the carotid arteries (two stents per vessel) of four pigs. Intravascular optical coherence tomography (OCT) and digital subtraction angiography (DSA) images obtained on day 21 were compared to histological specimens. Results A case of ISS in a PED-Flex device was assessed with OCT imaging. Neointima with asymmetrical topography completely covering the PED struts was observed. Histological preparations of the stenotic area demonstrated thrombus on the surface of device struts, covered by neointima. Conclusion This study provides a plausible concept for reversible ISS in flow-diverters. Based on an observation of a previous experiment, we propose that similar cases of ISS are related to thrombus presence underneath endothelization, but further experiments focused on this phenomenon are needed. Optical Coherence Tomography will be useful tool when available for clinical use.


Sign in / Sign up

Export Citation Format

Share Document