P2OD: Real-time Precise Onboard Orbit Determination for LEO Satellites

Author(s):  
Pietro Giordano ◽  
Paolo Zoccarato ◽  
Michiel Otten ◽  
Massimo Crisci
2019 ◽  
Vol 11 (23) ◽  
pp. 2815 ◽  
Author(s):  
Xingxing Li ◽  
Jiaqi Wu ◽  
Keke Zhang ◽  
Xin Li ◽  
Yun Xiong ◽  
...  

The rapid growing number of earth observation missions and commercial low-earth-orbit (LEO) constellation plans have provided a strong motivation to get accurate LEO satellite position and velocity information in real time. This paper is devoted to improve the real-time kinematic LEO orbits through fixing the zero-differenced (ZD) ambiguities of onboard Global Navigation Satellite System (GNSS) phase observations. In the proposed method, the real-time uncalibrated phase delays (UPDs) are estimated epoch-by-epoch via a global-distributed network to support the ZD ambiguity resolution (AR) for LEO satellites. By separating the UPDs, the ambiguities of onboard ZD GPS phase measurements recover their integer nature. Then, wide-lane (WL) and narrow-lane (NL) AR are performed epoch-by-epoch and the real-time ambiguity–fixed orbits are thus obtained. To validate the proposed method, a real-time kinematic precise orbit determination (POD), for both Sentinel-3A and Swarm-A satellites, was carried out with ambiguity–fixed and ambiguity–float solutions, respectively. The ambiguity fixing results indicate that, for both Sentinel-3A and Swarm-A, over 90% ZD ambiguities could be properly fixed with the time to first fix (TTFF) around 25–30 min. For the assessment of LEO orbits, the differences with post-processed reduced dynamic orbits and satellite laser ranging (SLR) residuals are investigated. Compared with the ambiguity–float solution, the 3D orbit difference root mean square (RMS) values reduce from 7.15 to 5.23 cm for Sentinel-3A, and from 5.29 to 4.01 cm for Swarm-A with the help of ZD AR. The SLR residuals also show notable improvements for an ambiguity–fixed solution; the standard deviation values of Sentinel-3A and Swarm-A are 4.01 and 2.78 cm, with improvements of over 20% compared with the ambiguity–float solution. In addition, the phase residuals of ambiguity–fixed solution are 0.5–1.0 mm larger than those of the ambiguity–float solution; the possible reason is that the ambiguity fixing separate integer ambiguities from unmodeled errors used to be absorbed in float ambiguities.


GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Chris Rizos

AbstractDue to an increasing requirement for high accuracy orbital information for low Earth orbit (LEO) satellites, precise orbit determination (POD) of LEO satellites is a topic of growing interest. To assure the safety and reliability of the applications requiring high accuracy LEO orbits in near-real-time, integrity monitoring (IM) is an essential operation of the POD process. In this contribution, the IM strategy for LEO POD in both the kinematic and reduced-dynamic modes is investigated. The overbounding parameters of the signal-in-space range error are investigated for the GPS products provided by the International GNSS Service’s Real-Time Service and the Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis service. Benefiting from the dynamic models used and the improved model strength, the test results based on the data of the LEO satellite GRACE FO-1 show that the average-case mean protection levels (PLs) can be reduced from about 3–4 m in the kinematic mode to about 1 m in the reduced-dynamic mode in the radial, along-track and cross-track directions. The overbounding mean values of the SISRE play the dominant role in the final PLs. In the reduced-dynamic mode and average-case projection, the IM availabilities reach above 99% in the radial, along-track and cross-track directions with the alert limit (AL) set to 2 m. The values are still above 98% with the AL set to 4 m, when the duty cycle of tracking is reduced to 40%, e.g., in the case of power limits for miniature satellites such as CubeSats.


GPS Solutions ◽  
2005 ◽  
Vol 9 (3) ◽  
pp. 226-235 ◽  
Author(s):  
Oliver Montenbruck ◽  
Eberhard Gill ◽  
Remco Kroes

Sign in / Sign up

Export Citation Format

Share Document