Low-cost Vehicle GNSS Positioning Algorithm Using SSR2OSR Method

Author(s):  
Denghui Wang ◽  
Shaojun Feng ◽  
Hongzheng Cui
2018 ◽  
Vol 35 (4) ◽  
pp. 4037-4048
Author(s):  
Kexun Chen ◽  
Xueying Zhang ◽  
K. Kiatsupaibul

2021 ◽  
Vol 2078 (1) ◽  
pp. 012070
Author(s):  
Qianrong Zhang ◽  
Yi Li

Abstract Ultra-wideband (UWB) has broad application prospects in the field of indoor localization. In order to make up for the shortcomings of ultra-wideband that is easily affected by the environment, a positioning method based on the fusion of infrared vision and ultra-wideband is proposed. Infrared vision assists locating by identifying artificial landmarks attached to the ceiling. UWB uses an adaptive weight positioning algorithm to improve the positioning accuracy of the edge of the UWB positioning coverage area. Extended Kalman filter (EKF) is used to fuse the real-time location information of the two. Finally, the intelligent mobile vehicle-mounted platform is used to collect infrared images and UWB ranging information in the indoor environment to verify the fusion method. Experimental results show that the fusion positioning method is better than any positioning method, has the advantages of low cost, real-time performance, and robustness, and can achieve centimeter-level positioning accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1385 ◽  
Author(s):  
José Moreno ◽  
Fernando Álvarez ◽  
Teodoro Aguilera ◽  
José Paredes

Self-calibrated Acoustic Local Positioning Systems (ALPS) generally require a high consumption of hardware and software resources to obtain the user’s position at an acceptable update rate. To address this limitation, this work proposes a self-calibrated ALPS based on a software/hardware co-design approach. This working architecture allows for efficient communications, signal processing tasks, and the running of the positioning algorithm on low-cost devices. This fact also enables the real-time system operation. The proposed system is composed of a minimum of four RF-synchronized active acoustic beacons, which emit spread-spectrum modulated signals to position an unlimited number of receiver nodes. Each receiver node estimates the beacons’ position by means of an auto-calibration process and then computes its own position by means of a 3D multilateration algorithm. A set of experimental tests has been carried out where the feasibility of the proposed system is demonstrated. In these experiments, accuracies below 0.1 m are obtained in the determination of the receptor node position with respect to the set of previously-calibrated beacons.


2017 ◽  
Vol 53 (4) ◽  
pp. 1597-1613 ◽  
Author(s):  
Kenneth M. Pesyna ◽  
Todd E. Humphreys ◽  
Robert W. Heath ◽  
Thomas D. Novlan ◽  
Jianzhong Charlie Zhang
Keyword(s):  
Low Cost ◽  

2012 ◽  
Vol 47 (4) ◽  
pp. 147-153 ◽  
Author(s):  
J. Rapinski ◽  
S. Cellmer ◽  
Z. Rzepecka

ABSTRACT Pseudolites are ground based GNSS signal transmitters that have already been used in the project where visibility to the GNSS satellites is limited, however there are still many issues that need enhancement. A prototype of a low-cost pseudolite is being designed and assembled at the University of Warmia and Mazury. The goal of the project is to apply the pseudolite as an augmentation to GNSS positioning tasks in geodetic engineering projects. This paper presents the results of first prototype testing in the area of code generation, carrier frequency and signal power.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7265
Author(s):  
Zhitao Lyu ◽  
Yang Gao

High-precision positioning with low-cost global navigation satellite systems (GNSS) in urban environments remains a significant challenge due to the significant multipath effects, non-line-of-sight (NLOS) errors, as well as poor satellite visibility and geometry. A GNSS system is typically implemented with a least-square (LS) or a Kalman-filter (KF) estimator, and a proper weight scheme is vital for achieving reliable navigation solutions. The traditional weight schemes are based on the signal-in-space ranging errors (SISRE), elevation and C/N0 values, which would be less effective in urban environments since the observation quality cannot be fully manifested by those values. In this paper, we propose a new multi-feature support vector machine (SVM) signal classifier-based weight scheme for GNSS measurements to improve the kinematic GNSS positioning accuracy in urban environments. The proposed new weight scheme is based on the identification of important features in GNSS data in urban environments and intelligent classification of line-of-sight (LOS) and NLOS signals. To validate the performance of the newly proposed weight scheme, we have implemented it into a real-time single-frequency precise point positioning (SFPPP) system. The dynamic vehicle-based tests with a low-cost single-frequency u-blox M8T GNSS receiver demonstrate that the positioning accuracy using the new weight scheme outperforms the traditional C/N0 based weight model by 65.4% and 85.0% in the horizontal and up direction, and most position error spikes at overcrossing and short tunnels can be eliminated by the new weight scheme compared to the traditional method. It also surpasses the built-in satellite-based augmentation systems (SBAS) solutions of the u-blox M8T and is even better than the built-in real-time-kinematic (RTK) solutions of multi-frequency receivers like the u-blox F9P and Trimble BD982.


2014 ◽  
Vol 532 ◽  
pp. 121-125
Author(s):  
Wei Jiang ◽  
Feng Yang

In recent years, people pay more and more attention to coal production safety. In order to enhance the security of underground work, optimize the coal mine management, and improve the personnel location accuracy, a newly arisen technique based on ZigBee with the low power, low cost and low complexity, which is suitable for being used to implement personnel position in underground coal mine, is built after comparing with several kinds of major wireless technology. In this paper, we present a new algorithm of underground personnel position based on this new technology. The algorithm uses Gaussian filtering algorithm and Bayesian statistics theory. The algorithm has been tested and the result has been analyzed. The experimental results show that the proposed algorithm provides more accurate position than positioning algorithm using RSSI.


Sign in / Sign up

Export Citation Format

Share Document