3D Positioning Algorithm for Low Cost Mobile Robots

Author(s):  
Rafael Socas ◽  
Sebastian Dormido ◽  
Raquel Dormido ◽  
Ernesto Fabregas
Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Majid Yekkehfallah ◽  
Ming Yang ◽  
Zhiao Cai ◽  
Liang Li ◽  
Chuanxiang Wang

SUMMARY Localization based on visual natural landmarks is one of the state-of-the-art localization methods for automated vehicles that is, however, limited in fast motion and low-texture environments, which can lead to failure. This paper proposes an approach to solve these limitations with an extended Kalman filter (EKF) based on a state estimation algorithm that fuses information from a low-cost MEMS Inertial Measurement Unit and a Time-of-Flight camera. We demonstrate our results in an indoor environment. We show that the proposed approach does not require any global reflective landmark for localization and is fast, accurate, and easy to use with mobile robots.


Author(s):  
Abul Al Arabi ◽  
Rayhan Sardar Tipu ◽  
Mohammad Raihanul Bashar ◽  
Binoy Barman ◽  
Shama Ali Monicay ◽  
...  

2021 ◽  
Vol 2078 (1) ◽  
pp. 012070
Author(s):  
Qianrong Zhang ◽  
Yi Li

Abstract Ultra-wideband (UWB) has broad application prospects in the field of indoor localization. In order to make up for the shortcomings of ultra-wideband that is easily affected by the environment, a positioning method based on the fusion of infrared vision and ultra-wideband is proposed. Infrared vision assists locating by identifying artificial landmarks attached to the ceiling. UWB uses an adaptive weight positioning algorithm to improve the positioning accuracy of the edge of the UWB positioning coverage area. Extended Kalman filter (EKF) is used to fuse the real-time location information of the two. Finally, the intelligent mobile vehicle-mounted platform is used to collect infrared images and UWB ranging information in the indoor environment to verify the fusion method. Experimental results show that the fusion positioning method is better than any positioning method, has the advantages of low cost, real-time performance, and robustness, and can achieve centimeter-level positioning accuracy.


Robotics ◽  
2013 ◽  
pp. 375-390
Author(s):  
F. Nagata ◽  
T. Yamashiro ◽  
N. Kitahara ◽  
A. Otsuka ◽  
K. Watanabe ◽  
...  

Multiple mobile robots with six PSD (Position Sensitive Detector) sensors are designed for experimentally evaluating the performance of two control systems. They are self-control mode and server-supervisory control mode. The control systems are considered to realize swarm behaviors such as Ligia exotica. This is done by using only information of PSD sensors. Experimental results show basic but important behaviors for multiple mobile robots. They are following, avoidance, and schooling behaviors. The collective behaviors such as following, avoidance, and schooling emerge from the local interactions among the robots and/or between the robots and the environment. The objective of the study is to design an actual system for multiple mobile robots, to systematically simulate the behaviors of various creatures who form groups such as a school of fish or a swarm of insect. Further, the applicability of the server-supervisory control scheme to an intelligent DNC (Direct Numerical Control) system is briefly considered for future development. DNC system is an important peripheral apparatus, which can directly control NC machine tools. However, conventional DNC systems can neither deal with various information transmitted from different kinds of sensors through wireless communication nor output suitable G-codes by analyzing the sensors information in real time. The intelligent DNC system proposed at the end of the chapter aims to realize such a novel and flexible function with low cost.


2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


2018 ◽  
Vol 8 (9) ◽  
pp. 1635 ◽  
Author(s):  
Haojie Zhang ◽  
David Hernandez ◽  
Zhibao Su ◽  
Bo Su

Navigation is necessary for autonomous mobile robots that need to track the roads in outdoor environments. These functions could be achieved by fusing data from costly sensors, such as GPS/IMU, lasers and cameras. In this paper, we propose a novel method for road detection and road following without prior knowledge, which is more suitable with small single lane roads. The proposed system consists of a road detection system and road tracking system. A color-based road detector and a texture line detector are designed separately and fused to track the target in the road detection system. The top middle area of the road detection result is regarded as the road-following target and is delivered to the road tracking system for the robot. The road tracking system maps the tracking position in camera coordinates to position in world coordinates, which is used to calculate the control commands by the traditional tracking controllers. The robustness of the system is enhanced with the development of an Unscented Kalman Filter (UKF). The UKF estimates the best road borders from the measurement and presents a smooth road transition between frame to frame, especially in situations such as occlusion or discontinuous roads. The system is tested to achieve a recognition rate of about 98.7% under regular illumination conditions and with minimal road-following error within a variety of environments under various lighting conditions.


Author(s):  
Mehdi Dehghani ◽  
Hamed Kharrati ◽  
Hadi Seyedarabi ◽  
Mahdi Baradarannia

The accumulated error and noise sensitivity are the two common problems of ordinary inertial sensors. An accurate gyroscope is too expensive, which is not normally applicable in low-cost missions of mobile robots. Since the accelerometers are rather cheaper than similar types of gyroscopes, using redundant accelerometers could be considered as an alternative. This mechanism is called gyroscope-free navigation. The article deals with autonomous mobile robot (AMR) navigation based on gyroscope-free method. In this research, the navigation errors of the gyroscope-free method in long-time missions are demonstrated. To compensate the position error, the aid information of low-cost stereo cameras and a topological map of the workspace are employed in the navigation system. After precise sensor calibration, an amendment algorithm is presented to fuse the measurement of gyroscope-free inertial measurement unit (GFIMU) and stereo camera observations. The advantages and comparisons of vision aid navigation and gyroscope-free navigation of mobile robots will be also discussed. The experimental results show the increasing accuracy in vision-aid navigation of mobile robot.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1385 ◽  
Author(s):  
José Moreno ◽  
Fernando Álvarez ◽  
Teodoro Aguilera ◽  
José Paredes

Self-calibrated Acoustic Local Positioning Systems (ALPS) generally require a high consumption of hardware and software resources to obtain the user’s position at an acceptable update rate. To address this limitation, this work proposes a self-calibrated ALPS based on a software/hardware co-design approach. This working architecture allows for efficient communications, signal processing tasks, and the running of the positioning algorithm on low-cost devices. This fact also enables the real-time system operation. The proposed system is composed of a minimum of four RF-synchronized active acoustic beacons, which emit spread-spectrum modulated signals to position an unlimited number of receiver nodes. Each receiver node estimates the beacons’ position by means of an auto-calibration process and then computes its own position by means of a 3D multilateration algorithm. A set of experimental tests has been carried out where the feasibility of the proposed system is demonstrated. In these experiments, accuracies below 0.1 m are obtained in the determination of the receptor node position with respect to the set of previously-calibrated beacons.


Sign in / Sign up

Export Citation Format

Share Document