scholarly journals A generalization of primary ideals and strongly prime submodules

Author(s):  
Afroozeh Jafari ◽  
Mohammad Baziar ◽  
Saeed Safaeeyan
2018 ◽  
Vol 1 (21) ◽  
pp. 415-438
Author(s):  
Amer Shamil Abdulrhman

In this paper we study covering ideals by Cosets of primary ideals and we get a generalized the primary avoidance theorem in the rings which it has been


2020 ◽  
Vol 2 (2) ◽  
pp. 183
Author(s):  
Hisyam Ihsan ◽  
Muhammad Abdy ◽  
Samsu Alam B

Penelitian ini merupakan penelitian kajian pustaka yang bertujuan untuk mengkaji sifat-sifat submodul prima dan submodul prima lemah serta hubungan antara keduanya. Kajian dimulai dari definisi submodul prima dan submodul prima lemah, selanjutnya dikaji mengenai sifat-sifat dari keduanya. Pada penelitian ini, semua ring yang diberikan adalah ring komutatif dengan unsur kesatuan dan modul yang diberikan adalah modul uniter. Sebagai hasil dari penelitian ini diperoleh beberapa pernyataan yang ekuivalen, misalkan  suatu -modul ,  submodul sejati di  dan ideal di , maka ketiga pernyataan berikut ekuivalen, (1)  merupakan submodul prima, (2) Setiap submodul tak nol dari   -modul memiliki annihilator yang sama, (3) Untuk setiap submodul  di , subring  di , jika berlaku  maka  atau . Di lain hal, pada submodul prima lemah jika diberikan  suatu -modul,  submodul sejati di , maka pernyataan berikut ekuivalen, yaitu (1) Submodul  merupakan submodul prima lemah, (2) Untuk setiap , jika  maka . Selain itu, didapatkan pula hubungan antara keduanya, yaitu setiap submodul prima merupakan submodul prima lemah.Kata Kunci: Submodul Prima, Submodul Prima Lemah, Ideal Prima. This research is literature study that aims to examine the properties of prime submodules and weakly prime submodules and the relationship between  both of them. The study starts from the definition of prime submodules and weakly prime submodules, then reviewed about the properties both of them. Throughout this paper all rings are commutative with identity and all modules are unitary. As the result of this research, obtained several equivalent statements, let  be a -module,  be a proper submodule of  and  ideal of , then the following three statetments are equivalent, (1)  is a prime submodule, (2) Every nonzero submodule of   -module has the same annihilator, (3) For any submodule  of , subring  of , if  then  or . In other case, for weakly prime submodules, if given  is a unitary -module,  be a proper submodule of , then the following statements are equivalent, (1)  is a weakly prime submodule, (2) For any , if  then . In addition, also found the relationship between both of them, i.e. any prime submodule is weakly prime submodule.Keywords: Prime Submodules, Weakly Prime Submdules, Prime Ideal.


2012 ◽  
Vol 15 (4) ◽  
pp. 191-199
Author(s):  
Layla S. Mahmood ◽  
Keyword(s):  

2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


2006 ◽  
Vol 56 (2) ◽  
pp. 601-611 ◽  
Author(s):  
Mustafa Alkan ◽  
Yücel Tiraş

1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

2021 ◽  
Author(s):  
Kothuru Bhagyalakshmi ◽  
V. Amarendra Babu
Keyword(s):  

2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


2014 ◽  
Vol 57 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Kürşat Hakan Oral ◽  
Neslihan Ayşen Özkirişci ◽  
Ünsal Tekir

AbstractIn a multiplication module, prime submodules have the following property: if a prime submodule contains a finite intersection of submodules, then one of the submodules is contained in the prime submodule. In this paper, we generalize this property to infinite intersection of submodules and call such prime submodules strongly prime submodules. A multiplication module in which every prime submodule is strongly prime will be called a strongly 0-dimensional module. It is also an extension of strongly 0-dimensional rings. After this we investigate properties of strongly 0-dimensional modules and give relations of von Neumann regular modules, Q-modules and strongly 0-dimensional modules


Sign in / Sign up

Export Citation Format

Share Document