scholarly journals Efficient Transmission of 2D Chaotic Maps Encrypted Images with DWT-Based SC-FDMA LTE System

Author(s):  
Elhadi Mehallel ◽  
Djamel Abed ◽  
Amar Bouchemal

The single-carrier frequency division multiple access (SC-FDMA) is a promising technique that has been adopted as an uplink transmission scheme in the long-term evolution (LTE) cellular system. This is attributed to its advantages such as the low peak-to-average power ratio (PAPR) and the utilization of frequency-domain equalizers to resolve the problem of inter-symbol interference (ISI). In this paper, a Discrete Wavelet Transform (DWT) based SC-FDMA system is proposed for the effective transmission of encrypted images. The 2D Chaotic baker map encryption algorithm has been used to encrypt images to enhance their security during transmission via SC-FDMA- based systems. The performance of the process of encrypted image transmission using the 2D Chaotic baker map algorithm with wavelet transform-based SC-FDMA (DWT SC-FDMA) system is evaluated in terms of different performance metrics, with comparison to Discrete Fourier Transform SC-FDMA (DFT SC-FDMA) and, Discrete Cosine Transform SC-FDMA (DCT SC-FDMA) systems. The viability of the proposed scheme was tested with different wireless channel models and different subcarriers mapping schemes. Experimental results show that the proposed method of the encrypted image transmission via the DWT SC-FDMA system provides a remarkable performance gain compared to the other versions of the SC-FDMA system in terms of the PSNR, and the BER metrics in the wireless channel models. It also demonstrates the effectiveness of the proposed scheme and adds a degree of encryption to the transmitted images through the wireless channels.

2007 ◽  
Vol 4 (8) ◽  
pp. 13
Author(s):  
Alexander Galvis Quintero ◽  
Cristina Gómez Santamaría ◽  
Roberto Hincapié

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
KwangHyun Jeon ◽  
Xin Su ◽  
Bing Hui ◽  
KyungHi Chang

The next-generation wireless systems are expected to support data rates of more than 100 Mbps in outdoor environments. In order to support such large payloads, a polarized antenna may be employed as one of the candidate technologies. Recently, the third generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model in SCM-E for MIMO systems; however, this model is quite complex since it considers a great many channel-related parameters. Furthermore, the SCM-E channel model combines the channel coefficients of all the polarization links into one complex output, making it impossible to exploit the MIMO spatial multiplexing or diversity gains in the case of employing polarized antenna at transmitter and receiver side. In this paper, we present practical and simple 2D and 3D multipolarized multipath channel models, which take into account both the cross-polarization discrimination (XPD) and the Rician factor. After verifying the proposed channel models, the BER and PER performances and throughput using the EGC and MRC combining techniques are evaluated in multipolarized antenna systems.


2009 ◽  
Vol 13 (3) ◽  
pp. 181-183 ◽  
Author(s):  
Xiaoyuan Ta ◽  
Guoqiang Mao ◽  
B.D.O. Anderson

Sign in / Sign up

Export Citation Format

Share Document