scholarly journals CFD Analysis of Double Suction Centrifugal Pump with Double Volute

2017 ◽  
Vol 62 (1) ◽  
pp. 74
Author(s):  
Pranav Vyavahare ◽  
Lokavarapu Bhaskara Rao ◽  
Nilesh Patil

In this study, Computational Fluid Dynamics (CFD) Analysis is used to investigate the flow in the centrifugal pump impeller using the ANSYS-CFX. Impeller is designed for head of 22 m, discharge of 52.239 m3/hr and for the operating speed of 2970 RPM. Impeller vane profile is generated by tangent arc method and CFD analysis is performed for 1st stage of vertical pump out of 15 stages. Velocity and pressure distribution are analysed for casing and impeller. Using ANSYS-CFX head developed by this impeller is calculated and compared with the required value. From results of CFD analysis, performance curves are plotted and compared with analytical performance curves. Results obtained from CFD nearly matches with analytical results. 

2016 ◽  
Vol 819 ◽  
pp. 356-360
Author(s):  
Mazharul Islam ◽  
Jiří Fürst ◽  
David Wood ◽  
Farid Nasir Ani

In order to evaluate the performance of airfoils with computational fluid dynamics (CFD) tools, modelling of transitional region in the boundary layer is very critical. Currently, there are several classes of transition-based turbulence model which are based on different methods. Among these, the k-kL- ω, which is a three equation turbulence model, is one of the prominent ones which is based on the concept of laminar kinetic energy. This model is phenomenological and has several advantageous features. Over the years, different researchers have attempted to modify the original version which was proposed by Walter and Cokljat in 2008 to enrich the modelling capability. In this article, a modified form of k-kL-ω transitional turbulence model has been used with the help of OpenFOAM for an investigative CFD analysis of a NACA 4-digit airfoil at range of angles of attack.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


Sign in / Sign up

Export Citation Format

Share Document