scholarly journals Incremental Search for Informative Gene Selection in Cancer Classification

2021 ◽  
Vol 5 (2) ◽  
pp. 15-21
Author(s):  
Fathima Fajila ◽  
Yuhanis Yusof

Although numerous methods of using microarray data analysis for classification have been reported, there is space in the field of cancer classification for new inventions in terms of informative gene selection. This study introduces a new incremental search-based gene selection approach for cancer classification. The strength of wrappers in determining relevant genes in a gene pool can be increased as they evaluate each possible gene’s subset. Nevertheless, the searching algorithms play a major role in gene’s subset selection. Hence, there is the possibility of finding more informative genes with incremental application. Thus, we introduce an approach which utilizes two searching algorithms in gene’s subset selection. The approach was efficient enough to classify five out of six microarray datasets with 100% accuracy using only a few biomarkers while the rest classified with only one misclassification.

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Ahmed Bir-Jmel ◽  
Sidi Mohamed Douiri ◽  
Souad Elbernoussi

The recent advance in the microarray data analysis makes it easy to simultaneously measure the expression levels of several thousand genes. These levels can be used to distinguish cancerous tissues from normal ones. In this work, we are interested in gene expression data dimension reduction for cancer classification, which is a common task in most microarray data analysis studies. This reduction has an essential role in enhancing the accuracy of the classification task and helping biologists accurately predict cancer in the body; this is carried out by selecting a small subset of relevant genes and eliminating the redundant or noisy genes. In this context, we propose a hybrid approach (MWIS-ACO-LS) for the gene selection problem, based on the combination of a new graph-based approach for gene selection (MWIS), in which we seek to minimize the redundancy between genes by considering the correlation between the latter and maximize gene-ranking (Fisher) scores, and a modified ACO coupled with a local search (LS) algorithm using the classifier 1NN for measuring the quality of the candidate subsets. In order to evaluate the proposed method, we tested MWIS-ACO-LS on ten well-replicated microarray datasets of high dimensions varying from 2308 to 12600 genes. The experimental results based on ten high-dimensional microarray classification problems demonstrated the effectiveness of our proposed method.


2013 ◽  
Vol 74 (20) ◽  
pp. 9031-9041 ◽  
Author(s):  
Dong Kyun Park ◽  
Eun-Young Jung ◽  
Sang-Hong Lee ◽  
Joon S. Lim

Sign in / Sign up

Export Citation Format

Share Document