scholarly journals Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia

Haematologica ◽  
2019 ◽  
Vol 105 (3) ◽  
pp. 708-720 ◽  
Author(s):  
Heikki Kuusanmäki ◽  
Aino-Maija Leppä ◽  
Petri Pölönen ◽  
Mika Kontro ◽  
Olli Dufva ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2304-2304
Author(s):  
Amit Sharma ◽  
Nidhi Jyotsana ◽  
Courteney K. Lai ◽  
Anuhar Chaturvedi ◽  
Kerstin Görlich ◽  
...  

Abstract Introduction: Hematopoietic stem/progenitor cell differentiation is blocked in acute myeloid leukemia (AML) resulting in cytopenias and high risk of death. Most patients with AML become resistant to treatment due to lack of effective cytotoxic and differentiation fostering compounds. High expression of MN1 confers poor prognosis to AML patients and induces resistance to cytarabine and all-trans-retinoic acid (ATRA) induced differentiation. We thus set out to identify compounds which could potentially overcome the differentiation block in AML. Methods: Based on the above concepts and in an effort to identify novel compounds which are potent inducers of differentiation and apoptosis in AML, high-throughput drug screening was employed in the MN1 leukemic model. A total of 3580 bioactive compounds were tested in duplicate at a concentration of 2.5 µM using alamar blue fluorescence as readout. As MN1 cells are resistant to ATRA (at 1µM and even 10µM ATRA), the drug screening was performed in the presence of a clinically relevant dose of ATRA (1 µM) to identify compounds that concurrently act with the cytotoxic and/or differentiating effects of ATRA. To determine whether a compound was effective as monotherapy or if it synergized with ATRA, we also performed a validation phase study in which the IC50 of each candidate compound was tested alone and in combination with ATRA. Fifty-four inhibitors were chosen from the primary screen for further validation based on presumed mechanism of action and novelty. The shortlisted compound pyrimethamine (PMT) was validated for its differentiation and apoptosis promoting effects in various murine and human AML models. Results: Our high-throughput drug screening identified 117 compounds, which reduced MN1 leukemic cell proliferation by more than 80% above the ATRA-treated control in both replicates (inhibitors), 8 borderline inhibitors (one replicate with more than 80% inhibition and one with 74 to 80% inhibition), and 35 outliers, which inhibited cell proliferation by 80% or more in only one replicate. The biologic processes most frequently targeted by the 117 inhibitors were DNA replication (n=26), microtubule assembly (n=12), NF-kB pathway (n=8), dihydrofolate reductase (DHFR, n=3) and heat shock protein 90 (HSP90). Dihydrofolate reductase inhibitors, pyrimethamine and amethopterin/methotrexate emerged as top hits from the screening and preliminary validation studies. Validation studies identified the antifolate pyrimethamine (PMT) that potently induced apoptosis and differentiation in several murine and human leukemic cell lines when administered as a single agent. The cytotoxic effects of pyrimethamine were reversed by addition of an excess of folic acid whereas induction of myeloid differentiation at higher concentrations of pyrimethamine was not mediated through DHFR inhibition. We further evaluated the effect of pyrimethamine in an in vivo xenograft mouse model by subcutaneously inducing tumors with HL60 and THP1 cell lines. Oral pyrimethamine treatment significantly reduced tumor volumes after 14, 19 and 24 days post-transplantation and at death compared to solvent treated mice (P<0.01). The effect of pyrimethamine was further assessed in primary human AML cells and normal CD34+ cells by CFC assays. Colony numbers from primary AML cells, but not normal CD34+ bone marrow cells, were significantly reduced by pyrimethamine as compared to solvent control. Thus, our study identifies pyrimethamine as a candidate drug that is a potent and specific inducer of apoptosis and differentiation with the property of specifically targeting leukemic cells. Conclusion: Our high-throughput drug screening identified pyrimethamine as a potent and specific antileukemic compound and reinforces targeting of folate metabolism as a treatment strategy in acute myeloid leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 151-151
Author(s):  
Ramiro Garzon ◽  
Stefano Volinia ◽  
Chang G. Liu ◽  
Flavia Pichiorri ◽  
Tiziana Palumbo ◽  
...  

Abstract MicroRNAs are small non-coding RNAs of 19–25 nucleotides in length that are negative regulators of gene expression. Findings over the last few years indicate that microRNAs are involved in fundamental cellular process, including development and hematopoietic differentiation. Acute myeloid leukemia (AML) is a heterogeneous disorder that is characterized by proliferation of immature cells. Although there are well defined molecular subtypes of AML, the pathogenesis in the majority of cases is largely unknown. Focusing on known genes will not likely suffice to uncover the nature of the AML. The integration of a whole genome approach including non-coding RNA gene products may lead to an improve understanding of the biology of AML. Methods: To determine whether microRNAs are associated with known cytogenetic abnormalities and biological features in AML, we evaluated the microRNA expression profiles of 176 samples of adult AML with intermediate and poor risk cytogenetics and 10 CD34+ cells from healthy donors using a microarrays platform. After normalization, data were analyzed using significance analysis of microarrays and prediction analysis of microarrays software. An independent set of 28 patients with AML was used to validate the signatures using quantitative real time PCR. Treatment response was evaluated in 29 newly AML diagnosed patients 4 to 6 weeks after induction chemotherapy with idarubicin and cytarabine by bone marrow examination. Complete remission was defined as less than 5% blasts in the bone marrow. Otherwise it was categorized as resistant disease. Results: We found several microRNAs differentially expressed between CD34+ cells and all the AML samples. A subset of these microRNAs reflects the differentiation stage of the leukemias and correlate with the French-American-British classification of AML. Likewise, microRNAs are closely associated with the prevalent cytogenetic abnormalities. A common signature including the over expressed miR-20; miR-17, miR-25 and miR-191 are associated with short overall survival, while miR-29b is found down-regulated in patients with resistant disease. Furthermore, we proved experimentally that miR-29b regulates negatively MCL-1, a critical apoptosis regulator, which has been found up-regulated and associated with relapse and chemotherapy resistance in leukemia. Conclusions: MicroRNAs expression in AML is closely associated with differentiation stage, morphology and cytogenetics. A subset of MicroRNAs is correlated with survival and treatment response.


2017 ◽  
Vol 23 (2) ◽  
pp. 72-85 ◽  
Author(s):  
Mohammad Houshmand ◽  
Masoud Soleimani ◽  
Amir Atashi ◽  
Giuseppe Saglio ◽  
Mohammad Abdollahi ◽  
...  

2016 ◽  
Vol 16 (9) ◽  
pp. 818-828 ◽  
Author(s):  
Amit Sharma ◽  
Nidhi Jyotsana ◽  
Courteney K. Lai ◽  
Anuhar Chaturvedi ◽  
Razif Gabdoulline ◽  
...  

2021 ◽  
Vol 14 (5) ◽  
pp. 101048
Author(s):  
Priscilla Wander ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
Sandra S. Pinhanҫos ◽  
Bianca Koopmans ◽  
M.Emmy M. Dolman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document