pyrvinium pamoate
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1869
Author(s):  
Yu-Hsuan Fu ◽  
Chi-Yang Tseng ◽  
Jeng-Wei Lu ◽  
Wen-Hui Lu ◽  
Pei-Qi Lan ◽  
...  

Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10−6] and to endoplasmic reticulum stress [p-value = 8.67 × 10−7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10−8], and responses to a redox state [p-value = 5.80 × 10−5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10−8] and an ATP metabolic process [p-value = 3.95 × 10−4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yingpinyapat Kittirat ◽  
Jutarop Phetcharaburanin ◽  
Bundit Promraksa ◽  
Thanaporn Kulthawatsiri ◽  
Arporn Wangwiwatsin ◽  
...  

Pyrvinium pamoate (PP), an FDA-approved anthelmintic drug, has been validated as a highly potent anti-cancer agent and patented recently as a potential chemotherapeutic drug for various cancers. The aims of this study were, therefore, to investigate the ability of PP in anti-proliferative activity and focused on the lipid profiles revealing the alteration of specific lipid species in the liver fluke Opisthorchis viverrini (Ov)-associated cholangiocarcinoma (CCA) cells. PP inhibited CCA cell viability through suppressing mitochondrial membrane potential (MMP) and ATP productions, leading to apoptotic cell death. Liquid chromatography-mass spectrometry combined with chemometrics was performed to investigate lipid alteration during PP-induced apoptosis. The lipidomic analyses showed the altered lipid signatures of CCA cell types including S-acetyldihydrolipoamide, methylselenopyruvate, and triglycerides that were increased in PP-treated CCA cells. In contrast, the levels of sphinganine and phosphatidylinositol were lower in the PP-treated group compared with its counterpart. The orthogonal partial-least squares regression analysis revealed that PP-induced MMP dysfunction, leading to remarkably reduced ATP level, was significantly associated with triglyceride (TG) accumulation observed in PP-treated CCA cells. Our findings indicate that PP could suppress the MMP function, which causes inhibition of CCA cell viability through lipid production, resulting in apoptotic induction in CCA cells. These findings provide an anti-cancer mechanism of PP under apoptotic induction ability that may serve as the alternative approach for CCA treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Haisong Li ◽  
Shuhan Liu ◽  
Rihua Jin ◽  
Haiyang Xu ◽  
Yunqian Li ◽  
...  

AbstractTemozolomide (TMZ) is the mainstream chemotherapeutic drug for treating glioblastoma multiforme (GBM), but the intrinsic or acquired chemoresistance to TMZ has become the leading clinical concern, which is related to the repair of DNA alkylation sites by O6-methylguanine-DNA methyltransferase (MGMT). Pyrvinium pamoate (PP), the FDA-approved anthelminthic drug, has been reported to inhibit the Wnt/β-catenin pathway within numerous cancer types, and Wnt/β-catenin signaling pathway can modulate the expression of MGMT gene. However, whether PP affects the expression of MGMT and enhances TMZ sensitivity in GBM cells remains unclear. In the present study, we found that PP and TMZ had synergistic effect on inhibiting the viability of GBM cells, and PP induced inhibition of MGMT and enhanced the TMZ chemosensitivity of GBM cells through down-regulating Wnt/β-catenin pathway. Moreover, the overexpression of MGMT or β-catenin weakened the synergy between PP and TMZ. The mechanism of PP in inhibiting the Wnt pathway was indicated that PP resulted in the degradation of β-catenin via the AKT/GSK3β/β-catenin signaling axis. Moreover, Ser552 phosphorylation in β-catenin, which promotes its nuclear accumulation and transcriptional activity, is blocked by PP that also inhibits the Wnt pathway to some extent. The intracranial GBM mouse model also demonstrated that the synergy between PP and TMZ could be achieved through down-regulating β-catenin and MGMT, which prolonged the survival time of tumor-bearing mice. Taken together, our data suggest that PP may serve as the prospect medicine to improve the chemotherapeutic effect on GBM, especially for chemoresistant to TMZ induced by MGMT overexpression.


2021 ◽  
pp. molcanther.MCT-20-0652-A.2020
Author(s):  
Christopher W. Schultz ◽  
Grace A. McCarthy ◽  
Teena Nerwal ◽  
Avinoam Nevler ◽  
James B. DuHadaway ◽  
...  

Author(s):  
Keith Kiplangat Talaam ◽  
Daniel Ken Inaoka ◽  
Takeshi Hatta ◽  
Daigo Tsubokawa ◽  
Naotoshi Tsuji ◽  
...  

Emergence of parasites resistant to praziquantel, the only therapeutic agent, and its ineffectiveness as a prophylactic agent (inactive against the migratory/juvenile Schistosoma mansoni ), makes the development of new antischistosomal drugs urgent. The parasite’s mitochondrion is an attractive target for drug development because this organelle is essential for survival throughout the parasite’s life cycle. We investigated the effects of 116 compounds against Schistosoma mansoni cercariae motility that have been reported to affect mitochondria-related processes in other organisms. Next, eight compounds plus two controls (mefloquine and praziquantel) were selected and assayed against motility of schistosomula ( in vitro ) and adults ( ex vivo ). Prophylactic and therapeutic assays were performed using infected mouse models. Inhibition of oxygen consumption rate (OCR) was assayed using Seahorse XFe24 Analyzer. All selected compounds showed excellent prophylactic activity, reducing the worm burden in the lungs to less than 15% that obtained in the vehicle control. Notably, ascofuranone showed the highest activity with a 98% reduction of the worm burden, suggesting the potential for development of ascofuranone as a prophylactic agent. The worm burden of infected mice with S. mansoni at the adult stage was reduced by more than 50% in mice treated with mefloquine, nitazoxanide, amiodarone, ascofuranone, pyrvinium pamoate, or plumbagin. Moreover, adult mitochondrial OCR was severely inhibited by ascofuranone, atovaquone, and nitazoxanide, while pyrvinium pamoate inhibited both mitochondrial and non-mitochondrial OCRs. These results demonstrate that the mitochondria of S. mansoni are feasible target for drug development.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yitian Li

Abstract Background Anaplastic thyroid carcinoma is a highly lethal subtype of thyroid cancer without effective therapies. Drug resistance in anaplastic thyroid carcinoma poses a significant problem. Although artemisinin exerts antitumor effects, but its efficacy in anaplastic thyroid carcinoma is unknown. Methods We used RNA sequencing to identify differentially expressed genes. Next, we determined the cause of ART resistance by testing the expression and activity of β-catenin, and enhanced ART activity with a WNT signaling inhibitor. Results Artemisinin suppressed the growth of BHT-101 but not human thyroid anaplastic carcinoma (CAL-62) cells. The mechanism of artemisinin resistance in CAL-62 was associated with the aberrant activation of WNT signaling. Pyrvinium pamoate, an inhibitor of WNT signaling, was used to overcome ART resistance in CAL-62 cells. The combination of artemisinin and pyrvinium pamoate suppressed the growth of CAL-62 cells and induced the apoptosis. Conclusions Our study is the first to prove the efficacy of ART as monotherapy or in combination with PP in the management of anaplastic thyroid cancer, and that the inhibition of WNT signaling may overcome ART resistance.


2021 ◽  
Vol 14 (5) ◽  
pp. 101048
Author(s):  
Priscilla Wander ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
Sandra S. Pinhanҫos ◽  
Bianca Koopmans ◽  
M.Emmy M. Dolman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document