high throughput drug screening
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 104)

H-INDEX

25
(FIVE YEARS 5)

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Luyao Zhu ◽  
Changmin Shao ◽  
Hanxu Chen ◽  
Zhuoyue Chen ◽  
Yuanjin Zhao

In the drug therapy of tumor, efficient and stable drug screening platforms are required since the drug efficacy varies individually. Here, inspired by the microstructures of hepatic lobules, in which hepatocytes obtain nutrients from both capillary vessel and the central vein, we present a novel hierarchical hydrogel system with ordered micro-nano structure for liver cancer-on-a-chip construction and drug screening. The hierarchical hydrogel system was fabricated by using pregel to fill and replicate self-assembled colloidal crystal arrays and microcolumn array template. Due to the synergistic effect of its interconnected micro-nano structures, the resultant system could not only precisely control the size of cell spheroids but also realize adequate nutrient supply of cell spheroids. We have demonstrated that by integrating the hierarchical hydrogel system into a multichannel concentration gradients microfluidic chip, a functional liver cancer-on-a-chip could be constructed for high-throughput drug screening with good repeatability and high accuracy. These results indicated that the hierarchical hydrogel system and its derived liver cancer-on-a-chip are ideal platforms for drug screening and have great application potential in the field of personalized medicine.


Author(s):  
Erik J Uhlmann ◽  
Rosalia Rabinovsky ◽  
Hemant Varma ◽  
Rachid El Fatimy ◽  
Ekkehard M Kasper ◽  
...  

Abstract Meningioma is the most common primary central nervous system tumor. Although mostly nonmalignant, meningioma can cause serious complications by mass effect and vasogenic edema. While surgery and radiation improve outcomes, not all cases can be treated due to eloquent location. Presently no medical treatment is available to slow meningioma growth owing to incomplete understanding of the underlying pathology, which in turn is due to the lack of high-fidelity tissue culture and animal models. We propose a simple and rapid method for the establishment of meningioma tumor-derived primary cultures. These cells can be maintained in culture for a limited time in serum-free media as spheres and form adherent cultures in the presence of 4% fetal calf serum. Many of the tissue samples show expression of the lineage marker PDG2S, which is typically retained in matched cultured cells, suggesting the presence of cells of arachnoid origin. Furthermore, nonarachnoid cells including vascular endothelial cells are also present in the cultures in addition to arachnoid cells, potentially providing a more accurate tumor cell microenvironment, and thus making the model more relevant for meningioma research and high-throughput drug screening.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3183
Author(s):  
Xingchi Chen ◽  
Chang Liu ◽  
Laureana Muok ◽  
Changchun Zeng ◽  
Yan Li

The blood–brain barrier (BBB) is a vital structure for maintaining homeostasis between the blood and the brain in the central nervous system (CNS). Biomolecule exchange, ion balance, nutrition delivery, and toxic molecule prevention rely on the normal function of the BBB. The dysfunction and the dysregulation of the BBB leads to the progression of neurological disorders and neurodegeneration. Therefore, in vitro BBB models can facilitate the investigation for proper therapies. As the demand increases, it is urgent to develop a more efficient and more physiologically relevant BBB model. In this review, the development of the microfluidics platform for the applications in neuroscience is summarized. This article focuses on the characterizations of in vitro BBB models derived from human stem cells and discusses the development of various types of in vitro models. The microfluidics-based system and BBB-on-chip models should provide a better platform for high-throughput drug-screening and targeted delivery.


2021 ◽  
Vol 9 (11) ◽  
pp. 2330
Author(s):  
Antonia Molloy ◽  
James Harrison ◽  
John S. McGrath ◽  
Zachary Owen ◽  
Clive Smith ◽  
...  

Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi178-vi178
Author(s):  
Seung Won Choi

Abstract We aimed to evaluate the preclinical efficacy of GC1118, a novel anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), against glioblastoma (GBM) tumors using patient-derived xenograft (PDX) models. A total of 15 distinct GBM PDX models were used to evaluate the therapeutic efficacy of GC1118. Genomic data derived from PDX models were analyzed to identify potential biomarkers associated with the anti-tumor efficacy of GC1118. A patient-derived cell-based high-throughput drug screening assay was performed to further validate the efficacy of GC1118. Compared to cetuximab, GC1118 exerted comparable growth inhibitory effects on the GBM tumors in the PDX models. We confirmed that GC1118 accumulated within the tumor by crossing the blood–brain barrier in in vivo specimens and observed the survival benefit in GC1118-treated intracranial models. Genomic analysis revealed high EGFR amplification as a potent biomarker for predicting the therapeutic efficacy of GC1118 in GBM tumors. In summary, GC1118 exerted a potent anti-tumor effect on GBM tumors in PDX models, and its therapeutic efficacy was especially pronounced in the tumors with high EGFR amplification. Our study supports the importance of patient stratification based on EGFR copy number variation in clinical trials for GBM. The superiority of GC1118 over other EGFR mAbs in GBM tumors should be assessed in future studies.


2021 ◽  
Author(s):  
Dingchen Yu

Quorum sensing, as inner- or inter-species microbial communication process orchestrated by diffusible autoinducers, typically results in collective pathogenic behaviours, being recognized as a promising druggable target for anti-virulence. Here, we reconstituted las and rhl quorum sensing pathways of Pseudomonas aeruginosa, mediated by acyl-homoserine lactones (AHLs) and LuxI/LuxR-family proteins, with fluorescence output in Escherichia coli cell-free expression system, offering a platform to rapidly evaluate quorum sensing inhibitors (QSIs) in vitro. Previously reported small-molecule quorum sensing inhibitors for interfering with P. aeruginosa quorum sensing systems were tested and showed mild to high on-target inhibition as well as off-target toxicity. Of note, quercetin displayed potent on-target inhibition to quorum sensing pathways as well as acceptable off-target toxicity to cell-free expression machinery. Upon our work, cell-free platform is anticipated to further facilitate automated and high-throughput drug screening, bridge in silico and in vivo drug-screening methods, and accelerate the upgrading of antimicrobial arsenal.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6385
Author(s):  
Roman G. Szafran ◽  
Benita Wiatrak

In this study, we thoroughly analyzed molecular gradient generation, its stability over time, and linearity in our high-throughput drug screening microfluidic assay (HTS). These parameters greatly affect the precision and accuracy of the device’s analytical protocol. As part of the research, we developed a mathematical model of dependence of the concentration profile on the initial concentrations of active substances in reservoirs and the number of tilts, as well as the dependence of the active substance concentration profiles in the culture chambers on the concentration profile of the reference dye in the indicator chamber. The mean concentration prediction error of the proposed equations ranged from 1.4% to 2.4% for the optimized parameters of the procedure and did not increase with the incubation time. The concentration profile linearity index, Pearson’s correlation coefficient reached −0.997 for 25 device tilts. The observed time stability of the profiles was very good. The mean difference between the concentration profile after 5 days of incubation and the baseline profile was only 7.0%. The newly created mathematical relationships became part of the new HTS biochip operating protocols, which are detailed in the article.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5124
Author(s):  
Margo Dona ◽  
Maaike Lamers ◽  
Svenja Rohde ◽  
Marnix Gorissen ◽  
Henri J. L. M. Timmers

Patients with mutations in the β-subunit of the succinate dehydrogenase (SDHB) have the highest risk to develop incurable malignant phaeochromocytomas and paragangliomas (PPGLs). Therapy development is hindered by limited possibilities to test new therapeutic strategies in vivo. One possible molecular mechanism of SDHB-associated tumorigenesis originates in an overproduction of reactive oxygen species (ROS) due to mitochondrial dysfunction. Ascorbic acid (Vitamin C) has already been shown to act as anti-cancer agent in several clinical trials for various types of cancer. In this study, the potential of the sdhbrmc200 zebrafish model to study SDHB-associated PPGLs using a drug screening approach was investigated. First, we identified increased basal ROS levels in homozygous sdhb larvae compared to heterozygous and wild-type siblings. Using a semi high-throughput drug screening, the effectiveness of different dosages of anti- and pro-oxidant Vitamin C were assessed to evaluate differences in survival, ROS levels, and locomotor activity. Low-dosage levels of Vitamin C induced a decrease of ROS levels but no significant effects on lifespan. In contrast, high-dosage levels of Vitamin C shortened the lifespan of the homozygous sdhbrmc200 larvae while not affecting the lifespan of heterozygous and wild-type siblings. These results validated the sdhbrmc200 zebrafish model as a powerful drug screening tool that may be used to identify novel therapeutic targets for SDHB-associated PPGLs.


Sign in / Sign up

Export Citation Format

Share Document