scholarly journals Distribution characteristics and stability of soil aggregates as compounded by soft rock and sand under different planting years of corn in Mu Us sandy land in China

2021 ◽  
pp. 917-923
Author(s):  
Zhang Haiou ◽  
Guo Zhen ◽  
Shi Chendi ◽  
Li Juan

Field plot experiments of compound soil mixing with soft rock and sand with ratios of 1 : 1, 1 : 2 and 1 : 5 during 2010-2018 years of corn cultivation in Mu Us Sandy Land in china., was carried out to observe the change characteristics of composition, distribution and mean weight diameter (MWD) of compound soil water stable aggregate (WSA) under different corn planting years. The results showed that with the increase of planting years, the content of WSA in composite soils of three portions with a particle size of < 0.25 mm gradually decreased, and WSA with a particle size of > 0.25 mm showed a continuous increasing trend. The WSA with a particle size of 0.25 - 0.5 mm accounted high for the maximum ratio, which plays an important role in the agglomeration of the compound soil. After 9 years of planting, the MWD of 1 : 1, 1 : 2 and 1 : 5 compound soil WSA increased by 1.13, 1.85 and 1.58 times, respectively, and t 1:2 compound soil WSA with particle size > 0.25 mm and MWD increase at a faster rate, which lead to a higher soil agglomeration and stability. The interaction between the mixture ratio of soft rock to sand and the planting years of corn has a significant impact on the formation and stability of WSA in the compound soil. With the increase of planting years of corn, the agglomeration effect of compound soil in different proportions was found to enhance, and the development of soil structure improve continuously. Bangladesh J. Bot. 50(3): 917-923, 2021 (September) Special

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Haiou Zhang ◽  
Jiancang Xie ◽  
Jichang Han ◽  
Haipeng Nan ◽  
Zhen Guo

The degraded aeolian sandy soil in China’s Mu Us Sandy Land requires amendment before it can be suitable for maize or other agricultural production. The addition of material from the local “soft” bedrock can create a new compound soil whose particle composition and structural stability are key issues for sustainable soil development in the region. We used field data from 2010 to 2018 to study the variations in fractal characteristics of compound soil particles at soft rock to sand volume ratios of 1 : 1, 1 : 2, and 1 : 5, along with changes in soil organic matter. Over the study period, all three compound soils showed gradual increases in clay and silt content with corresponding decreasing sand content. The fractal dimension (FD) of particles at ratio 1 : 2 increased by 8.8%, higher than those at 1 : 1 (8.6%) and 1 : 5 (7.7%). The organic matter content (OMC) of particles at ratio 1 : 2 reached a maximum (6.24 ± 0.30 g/kg), an increase of 12 times over the original value. The FD and OMC of particles at ratios 1 : 1 and 1 : 5 were less stable but showed overall increase. The 1 : 2 ratio compound soil was most suitable for maize growth as its clear increase in silt and clay content most improved the texture and OMC of the original sandy soil. Such research has important theoretical and practical significance for understanding the evolutionary mechanism and sustainable use of the compound soil in agriculture within the Mu Us Sandy Land.


2018 ◽  
Vol 8 (10) ◽  
pp. 1872 ◽  
Author(s):  
Jifeng Deng ◽  
Chengzhong Ma ◽  
Hongzhou Yu

Characterizing changes in the soil particle-size distributions (PSD) are a major issue in environmental research because it has a great impact on soil properties, soil management, and desertification. To date, the use of soil volume fractal dimension (D) is a feasible approach to describe PSD, and its calculation is mainly dependent on subdivisions of clay, silt, sand fractions as well as different soil particle-size classification (PSC) systems. But few studies have developed appropriate research works on how PSC systems affect the calculations of D. Therefore, in this study, topsoil (0–5 cm) across nine forest density gradients of Pinus sylvestris var. mongolica plantations (MPPs) ranging from 900–2700 trees ha–1 were selected in the Mu Us sandy land, China. The D of soil was calculated by measuring soil PSD through fractal model and laser diffraction technique. The experimental results showed that: (1) The predominant PSD was distributed within the sand classification followed by clay and silt particle contents, which were far less prevalent in the study area. The general order of D values (Ds) was USDA (1993) > ISO14688 (2002) > ISSS (1929) > Katschinski (1957) > China (1987) > Blott & Pye (2012) PSC systems. (2) Ds were significantly positively related to the contents of clay and silt, and Ds were significantly negatively to the sand content. Ds were susceptible to the MPPs establishment and forest densities. (3) Ds of six PSC systems were significantly positive correlated, which indicated that they not only have difference, but also have close connection. (4) According to the fractal model and descriptions of soil fractions under different PSC systems, refining scales of clay and sand fractions could increase Ds, while the refining scale of silt fraction could decrease Ds. From the conclusions above, it is highly recommended that USDA (1993) and Blott & Pye (2012) PSC systems be used as reliable and practical PSC systems for describing and calculating D of soil PSD.


Author(s):  
Sun Zenghui ◽  
Han Jichang ◽  
Wang Huanyuan ◽  
Zhang Ruiqing ◽  
Sun Yingying ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document