scholarly journals Comparison of Numerical Methods for Solving Initial Value Problems for Stiff Differential Equations

1970 ◽  
Vol 30 ◽  
pp. 122-132
Author(s):  
Sharaban Thohura ◽  
Azad Rahman

Special classes of Initial value problem of differential equations termed as stiff differential equations occur naturally in a wide variety of applications including the studies of spring and damping systems, chemical kinetics, electrical circuits, and so on. Most realistic stiff systems do not have analytical solutions so that a numerical procedure must be used. In this paper we have discussed the phenomenon of stiffness and the general purpose procedures for the solution of stiff differential equation. Because of their applications in many branches of engineering and science, many algorithms have been proposed to solve such problems. In this study we have focused on some conventional methods namely Runge-Kutta method, Adaptive Stepsize Control for Runge-Kutta and an ODE Solver package, EPISODE. We describe the characteristics shared by these methods. We compare the performance and the computational effort of such methods. In order to achieve higher accuracy in the solution, the traditional numerical methods such as Euler, explicit Runge-Kutta and Adams –Moulton methods step size need to be very small. This however introduces enough round-off errors to cause instability of the solution. To overcome this problem we have used two other algorithms namely Adaptive Stepsize Control for Runge-Kutta and EPISODE. The results are compared with exact one to determine the efficiency of the above mentioned method. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 121-132  DOI: http://dx.doi.org/10.3329/ganit.v30i0.8509

2021 ◽  
Vol 39 (2) ◽  
pp. 203-222
Author(s):  
Khiord Boruah ◽  
Bipan Hazarika ◽  
A. E. Bashirov

The objective of this paper is to derive and analyze Bigeometric-Euler, Taylor's Bigeometric-series and Bigeometric-Runge-Kutta methods of different orders for the approximation of initial value problems of Bigeometric-differential equations.


2021 ◽  
Vol 10 (1) ◽  
pp. 118-133
Author(s):  
Mohammad Asif Arefin ◽  
Biswajit Gain ◽  
Rezaul Karim

In this article, three numerical methods namely Euler’s, Modified Euler, and Runge-Kutta method have been discussed, to solve the initial value problem of ordinary differential equations. The main goal of this research paper is to find out the accurate results of the initial value problem (IVP) of ordinary differential equations (ODE) by applying the proposed methods. To achieve this goal, solutions of some IVPs of ODEs have been done with the different step sizes by using the proposed three methods, and solutions for each step size are analyzed very sharply. To ensure the accuracy of the proposed methods and to determine the accurate results, numerical solutions are compared with the exact solutions. It is observed that numerical solutions are best fitted with exact solutions when the taken step size is very much small. Consequently, all the proposed three methods are quite efficient and accurate for solving the IVPs of ODEs. Error estimation plays a significant role in the establishment of a comparison among the proposed three methods. On the subject of accuracy and efficiency, comparison is successfully implemented among the proposed three methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Chengjian Zhang

This paper presents a class of new numerical methods for nonlinear functional-integrodifferential equations, which are derived by an adaptation of Pouzet-Runge-Kutta methods originally introduced for standard Volterra integrodifferential equations. Based on the nonclassical Lipschitz condition, analytical and numerical stability is studied and some novel stability criteria are obtained. Numerical experiments further illustrate the theoretical results and the effectiveness of the methods. In the end, a comparison between the presented methods and the existed related methods is given.


Sign in / Sign up

Export Citation Format

Share Document