adaptive stepsize
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 950
Author(s):  
Denis Butusov

Developing new and efficient numerical integration techniques is of great importance in applied mathematics and computer science. Among the variety of available methods, multistep ODE solvers are broadly used in simulation software. Recently, semi-implicit integration proved to be an efficient compromise between implicit and explicit ODE solvers, and multiple high-performance semi-implicit methods were proposed. However, the computational efficiency of any ODE solver can be significantly increased through the introduction of an adaptive integration stepsize, but it requires the estimation of local truncation error. It is known that recently proposed extrapolation semi-implicit multistep methods (ESIMM) cannot operate with existing local truncation error (LTE) estimators, e.g., embedded methods approach, due to their specific right-hand side calculation algorithm. In this paper, we propose two different techniques for local truncation error estimation and study the performance of ESIMM methods with adaptive stepsize control. The first considered approach is based on two parallel semi-implicit solutions with different commutation orders. The second estimator, called the “double extrapolation” method, is a modification of the embedded method approach. The introduction of the double extrapolation LTE estimator allowed us to additionally increase the precision of the ESIMM solver. Using several known nonlinear systems, including stiff van der Pol oscillator, as the testbench, we explicitly show that ESIMM solvers can outperform both implicit and explicit linear multistep methods when implemented with an adaptive stepsize.


Author(s):  
Xueling Zhou ◽  
Meixia Li ◽  
Haitao Che

In this paper, we study the split equality fixed point problem and propose a new iterative algorithm with a self-adaptive stepsize that does not need the prior information of the operator norms and is calculated easily. The L-Lipschitz and quasi-pseudo-contractive mappings are chosen as the operators in the algorithm since they have a wider range of applications. Moreover, we prove that the sequence generated by the algorithm strongly converges to the solution of the problem. Finally, we check the feasibility and effectiveness of the algorithm by comparing with other algorithms.


2021 ◽  
Vol 7 (4) ◽  
pp. 4960-4973
Author(s):  
Zheng Zhou ◽  
◽  
Bing Tan ◽  
Songxiao Li

<abstract><p>This paper is to analyze the approximation solution of a split variational inclusion problem in the framework of Hilbert spaces. For this purpose, inertial hybrid and shrinking projection algorithms are proposed under the effect of a self-adaptive stepsize which does not require information of the norms of the given operators. The strong convergence properties of the proposed algorithms are obtained under mild constraints. Finally, a numerical experiment is given to illustrate the performance of proposed methods and to compare our algorithms with an existing algorithm.</p></abstract>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lateef Olakunle Jolaoso ◽  
Maggie Aphane

AbstractIn this paper, we introduce a new inertial self-adaptive projection method for finding a common element in the set of solution of pseudomonotone variational inequality problem and set of fixed point of a pseudocontractive mapping in real Hilbert spaces. The self-adaptive technique ensures the convergence of the algorithm without any prior estimate of the Lipschitz constant. With the aid of Moudafi’s viscosity approximation method, we prove a strong convergence result for the sequence generated by our algorithm under some mild conditions. We also provide some numerical examples to illustrate the accuracy and efficiency of the algorithm by comparing with other recent methods in the literature.


Sign in / Sign up

Export Citation Format

Share Document