scholarly journals Human Embryonic Stem Cells Where To Draw The Line

2012 ◽  
Vol 7 (2) ◽  
pp. 40-43
Author(s):  
T Hasan

Introduction: Human-embryonic stem cells (hESC) are derived from very early stages of the human embryo. These cells have immense plasticity and can be conditioned to develop into any type of cell of the human body. Despite all their promising utility, hESC researches have recently been the subject of fervent debate. Objective: This paper explores the implications of hESC therapy from a bio-ethical perspective. Method: Published literature with strict inclusion and exclusion criteria was extensively reviewed through use of general and meta search engines to elucidate the applications and implications of hESC. Discussion: Studies indicate that the potential of hESC in reconstructive and regenerative medicine is undisputable but complex social and moral issues are hopelessly intertwined beneath the pleasant facade. hESC offer endless possibilities in understanding bio-molecular disease patterns, supplying readymade healthy organs, interpreting aging and organogenesis at the cellular level. The use of hESC is well established in leukemia and scientists anticipate diverse applications in a wide range of congenital and acquired medical conditions. However, many dilemmas arise in context of their biomedical usage because of the destruction of donor human embryos in producing stem cells, adverse transplant reactions, teratogenecity, phenotypic / genotypic abnormalities, nonstandardized research laws, logistic issues and the possibility of eternal life and humanoid chimeras. Conclusion: The wisdom to choose between ' mindful utilization' and 'senseless exploitation' lies with us. The large scale commercialization of human life or the killing of viable embryos cannot be justified by any means. A neutral approach with increased involvement of uncontroversial progenitors should be adopted. DOI: http://dx.doi.org/10.3329/jafmc.v7i2.10396 JAFMC 2011; 7(2): 40-43

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Markus Hengstschläger ◽  
Margit Rosner

AbstractIt is known that in countries, in which basic research on human embryos is in fact prohibited by law, working with imported human embryonic stem cells (hESCs) can still be permitted. As long as hESCs are not capable of development into a complete human being, it might be the case that they do not fulfill all criteria of the local definition of an embryo. Recent research demonstrates that hESCs can be developed into entities, called embryoids, which increasingly could come closer to actual human embryos in future. By discussing the Austrian situation, we want to highlight that current embryoid research could affect the prevailing opinion on the legal status of work with hESCs and therefore calls for reassessment of the regulations in all countries with comparable definitions of the embryo.


2016 ◽  
Vol 113 (19) ◽  
pp. E2598-E2607 ◽  
Author(s):  
Shinichiro Yabe ◽  
Andrei P. Alexenko ◽  
Mitsuyoshi Amita ◽  
Ying Yang ◽  
Danny J. Schust ◽  
...  

Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Yoon Young Kim ◽  
Seung-Yup Ku ◽  
Zev Rosenwaks ◽  
Hung Ching Liu ◽  
Sun Kyung Oh ◽  
...  

Human embryonic stem cells (hESCs) have capacities to self-renew and differentiate into all cell typesin vitro. Red ginseng (RG) is known to have a wide range of pharmacological effectsin vivo; however, the reports on its effects on hESCs are few. In this paper, we tried to demonstrate the effects of RG on the proliferation and differentiation of hESCs. Undifferentiated hESCs, embryoid bodies (EBs), and hESC-derived cardiac progenitors (CPs) were treated with RG extract at 0.125, 0.25, and 0.5 mg/mL. After treatment of undifferentiated hESCs from day 2 to day 6 of culture, BrdU labeling showed that RG treatment increased the proliferation of hESCs, and the expression of Oct4 and Nanog was increased in RG-treated group. To find out the effects of RG on early differentiation stage cells, EBs were treated with RG extract for 10 days and attached for further differentiation. Immunostaining for three germ layer markers showed that RG treatment increased the expressions of Brachyury and HNF3βon EBs. Also, RG treatment increased the expression of Brachyury in early-stage and of Nkx2.5 in late-stage hESC-derived CPs. These results demonstrate facilitating effects of RG extract on the proliferation and early differentiation of hESC.


PREDESTINASI ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 79
Author(s):  
Chris O. Abakare

The scientific reports on the successful use of Human Embryonic Stem cells to cure many sicknesses as provoked a long-standing controversy about the ethics of research involving human embryos. This controversy arises from sharply differing moral views regarding the use of embryos for research purposes. Indeed, an earnest international scholarly debate continues till today over the ethical, legal, and medical issues that arise in this arena. Immanuel Kant (1724-1804) had given a moral guideline that ethical decisions should be made by considering the nature of the act itself, not its consequences. Furthermore, Kant has warned that persons (autonomous agents) have a special moral worth or dignity, which is the basis for the respect that is owed to them. Thus, respect for persons, means never using persons merely as means to our ends, but always treating them also as ends in themselves. Some philosophers like Richard Doerflinger, Michael Novak, Gilbert Meilaender, and Robert P. George have used the Kantian formula of humanity to criticize the argument that spare IVF embryos can be used for stem cell research given their inevitable death and thus lack of properties for future life. However, the purpose of this paper is to take a critical look at the Human Embryonic Stem cells subject matter to investigate the concept of “personhood’, with the maxim of ‘never treating a person as a means’. This paper argues that if we accepts the definition of a person to possess capacities such as ‘rational’ ‘will’ and ‘self-determination’, then IVF embryos is not a person and can therefore be researched upon, used to derive human embryonic stem cells. Hence, Human Embryonic Stem cells research can be carried out within the ambiance of Kant Categorical Imperative without moral conflict. 


Biology Open ◽  
2021 ◽  
Author(s):  
Sapna Chhabra ◽  
Aryeh Warmflash

Human embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to recently published single cell transcriptomic data from early human embryos (Xiang et al., 2019). Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs. Our results suggest that BMP-treated hESCs are transcriptionally more similar to amnion cells than trophectoderm cells in the monkey embryo. Together with prior studies, this result indicates that hESCs possess a unique ability to form mature trophectoderm subtypes via an amnion-like transcriptional state.


2010 ◽  
Vol 88 (16) ◽  
pp. 3467-3478 ◽  
Author(s):  
Asuka Morizane ◽  
Vladimer Darsalia ◽  
M. Oktar Guloglu ◽  
Tord Hjalt ◽  
Manolo Carta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document