scholarly journals Separation Points of Magneto-hydrodynamic Boundary Layer Flow Along a Vertical Plate with Exponentially Decreasing Free Stream Velocity

1970 ◽  
Vol 5 (1) ◽  
pp. 11-18 ◽  
Author(s):  
MA Alim ◽  
MM Rahman ◽  
MM Karim

The points of separation of magneto-hydrodynamic mixed convection boundary layer flow along a vertical plate have been investigated. The free stream velocity is considered decreasing exponentially in the stream wise direction. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to local non-similar boundary layer equations, which are solved numerically by implicit finite difference method known as Keller box scheme. Here we have focused our attention to find the effects of suction, magnetic field and other relevant physical parameters on the position of boundary layer separation. The numerical results are expressed in terms of local shear stress showing the effects of suction, buoyancy, Prandlt number and magnetic field on the shear stress as well as on the points of separation. Keywords: Separation points, magneto-hydrodynamic, mixed convection, boundary layer, suction, finite difference method, Keller box scheme.   doi:10.3329/jname.v5i1.1868Journal of Naval Architecture and Marine Engineering Vol. 5, No. 1 (June, 2008) 11-18. 

2017 ◽  
Vol 5 (4RAST) ◽  
pp. 52-58
Author(s):  
Jalaja P ◽  
Venkataramana B.S ◽  
Naveen V ◽  
K.R. Jayakumar

The effect of thermal radiation on steady natural convection boundary layer flow over a plate with variable viscosity and magnetic field has been studied in this paper. The effect of suction and injection is also considered in the investigation. The system of partial differential equations governing the nonsimilar flow has been solved numerically using implicit finite difference scheme along with a quasilinearization technique. The thermal radiation has significant effect on heat transfer coefficient and thermal transport in presence of viscosity variation parameter and magnetic field in case of suction and injection.


2013 ◽  
Vol 336 ◽  
pp. 57-63 ◽  
Author(s):  
Anisah Dasman ◽  
Abdul Rahman Mohd Kasim ◽  
Nurul Farahain Mohammad ◽  
Aurangzaib Mangi ◽  
Sharidan Shafie

The mixed convection boundary layer of a viscoelastic fluid past a sphere with constant temperature is discussed. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing non-similar partial differential equations are first transformed into dimensionless forms and then solved numerically using the Keller-box method by augmenting an extra boundary condition at infinity. Numerical results are presented for different values of the viscoelastic and mixed convection parameters K and , respectively. It is found that for cases of cooling sphere and heating sphere, the boundary layer separates from the sphere. To the best of our knowledge, this important classical problem has not been studied before for the case of a viscoelastic fluid. Thus, the results are original and new for this type of fluids.


Sign in / Sign up

Export Citation Format

Share Document