scholarly journals Pseudocomplementation on the Lattice of Convex Sublattices of a Lattice

2009 ◽  
Vol 2 (1) ◽  
pp. 87-90
Author(s):  
R. M. H. Rahman

By a new partial ordering relation "≤" the set of convex sublattices CS(L)  of a lattice L is again a lattice. In this paper we establish some results on the pseudocomplementation of (CS(L); ≤). We show that a lattice L with 0 is dense if and only if CS(L) is dense. Then we prove that a finite distributive lattice is a Stone lattice if and only if CS(L) is Stone. We also prove that an upper continuous lattice L is a Stone lattice if and only if CS(L) is Stone.  Keywords: Upper continuous lattice; Pseudocomplemented lattice; Dense lattice; Stone lattice. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.  DOI: 10.3329/jsr.v2i1.2485                  J. Sci. Res. 2 (1), 87-90  (2010) 

2016 ◽  
Vol 45 (3/4) ◽  
Author(s):  
Marcin Łazarz

In the paper we investigate Birkhoff’s conditions (Bi) and (Bi*). We prove that a discrete lattice L satisfies the condition (Bi) (the condition (Bi*)) if and only if L is a 4-cell lattice not containing a cover-preserving sublattice isomorphic to the lattice S*7 (the lattice S7). As a corollary we obtain a well known result of J. Jakub´ık from [6]. Furthermore, lattices S7 and S*7 are considered as so-called partially cover-preserving sublattices of a given lattice L, S7 ≪ L and S7 ≪ L, in symbols. It is shown that an upper continuous lattice L satisfies (Bi*) if and only if L is a 4-cell lattice such that S7 ≪/ L. The final corollary is a generalization of Jakubík’s theorem for upper continuous and strongly atomic lattices. Keywords: Birkhoff’s conditions, semimodularity conditions, modular lattice, discrete lattices, upper continuous lattice, strongly atomic lattice, cover-preserving sublattice, cell, 4-cell lattice.  


1998 ◽  
Vol 41 (3) ◽  
pp. 290-297 ◽  
Author(s):  
G. Grätzer ◽  
H. Lakser ◽  
E. T. Schmidt

AbstractWe prove that every finite distributive lattice can be represented as the congruence lattice of a finite (planar) semimodular lattice.


10.37236/5980 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Samuel Braunfeld

In Homogeneous permutations, Peter Cameron [Electronic Journal of Combinatorics 2002] classified the homogeneous permutations (homogeneous structures with 2 linear orders), and posed the problem of classifying the homogeneous $n$-dimensional permutation structures (homogeneous structures with $n$ linear orders) for all finite $n$. We prove here that the lattice of $\emptyset$-definable equivalence relations in such a structure can be any finite distributive lattice, providing many new imprimitive examples of homogeneous finite dimensional permutation structures. We conjecture that the distributivity of the lattice of $\emptyset$-definable equivalence relations is necessary, and prove this under the assumption that the reduct of the structure to the language of $\emptyset$-definable equivalence relations is homogeneous. Finally, we conjecture a classification of the primitive examples, and confirm this in the special case where all minimal forbidden structures have order 2. 


2020 ◽  
Vol 39 (3) ◽  
pp. 2831-2843
Author(s):  
Peng He ◽  
Xue-Ping Wang

Let D be a finite distributive lattice with n join-irreducible elements. It is well-known that D can be represented as the congruence lattice of a rectangular lattice L which is a special planer semimodular lattice. In this paper, we shall give a better upper bound for the size of L by a function of n, improving a 2009 result of G. Grätzer and E. Knapp.


1973 ◽  
Vol 38 (3) ◽  
pp. 368-388 ◽  
Author(s):  
John M. Macintyre

Let α be an admissible ordinal and let L be the first order language with equality and a single binary relation ≤. The elementary theory of the α-degrees is the set of all sentences of L which are true in the universe of the α-degrees when ≤ is interpreted as the partial ordering of the α-degrees. Lachlan [6] showed that the elementary theory of the ω-degrees is nonaxiomatizable by proving that any countable distributive lattice with greatest and least members can be imbedded as an initial segment of the degrees of unsolvability. This paper deals with the extension of these results to α-recursion theory for an arbitrary countable admissible α > ω. Given α, we construct a set A with α-degree a such that every countable distributive lattice with greatest and least member is order isomorphic to a segment of α-degrees {d ∣ a ≤αd≤αb} for some α-degree b. As in [6] this implies that the elementary theory of the α-degrees is nonaxiomatizable and hence undecidable.A is constructed in §2. A is a set of integers which is generic with respect to a suitable notion of forcing. Additional applications of such sets are summarized at the end of the section. In §3 we define the notion of a tree and construct a particular tree T0 which is weakly α-recursive in A. Using T0 we can apply the techniques of [6] and [2] to α-recursion theory. In §4 we reduce our main results to three technical lemmas concerning systems of trees. These lemmas are proved in §5.


Sign in / Sign up

Export Citation Format

Share Document